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Abstract
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Stablecoin owners are indirectly compensated for run risk by lending their coins to crypto
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I’m trying to buy the dip, but this dip is so big that now my stablecoins are
dipping too.

Trifusi0n, Reddit, May 10, 2022

1 Introduction

Stablecoins are a new form of private money. They are fragile, usually pay no interest, and
are rarely used for payments. Past incarnations of fragile private money nearly always traded
at a discount to par. But stablecoins largely trade at par. We examine a novel source of
demand for stablecoins, and we show theoretically and empirically how it helps stablecoins
maintain their peg most of the time while being exposed to priced run-risk and depegging in
times of stress.

Historically, privately-produced money took two forms. First, the money could be backed
by agents’ personal wealth, like Scottish bank notes backed by the wealth of the bank’s
partners with unlimited liability. Similarly, English inland bills of exchange were backed
by the bill’s endorsers, again with unlimited liability (Gorton, 2024). This money had
limited geographical circulation because the receiving party needed to recognize the endorsers.
Second, the private money could be issued by banks, like pre-Civil War U.S. banknotes.
Banks backed the monies with state bonds and loan portfolios. These private bank notes
circulated great distances but with discounts from par.

Stablecoins, like private banknotes, promise redemption at par on demand (Gorton and
Zhang 2021, Gorton et al. 2022). Unlike unbacked digital assets, such as Bitcoin, stablecoins
are usually backed by reserves, potentially risky and illiquid, and are denominated in fiat
currency.1 These two features—redemption at par on demand and illiquidity of reserves—
render stablecoins susceptible to runs similar to fragile banks, mutual funds, and money
market funds. Stablecoin holders should demand compensation for run risk. But stablecoins
have not typically paid any interest, unlike bank deposits and money market funds. Tether,
in particular, which has been the biggest collateralized stablecoin by market capitalization,
has not paid any interest to its holders despite its non-trivial run risk. How are investors
compensated for holding risky stablecoins?

We posit that a novel source of demand for stablecoins stems from their role in facilitating
speculation in other digital assets. Crypto speculators can borrow stablecoins to make levered
1We focus on so-called collateralized stablecoins that hold reserves instead of algorithmic stablecoins. The
reserves could be traditional financial assets (commercial paper, reverse repurchase agreements, Treasuries)
or crypto-related assets. Collateralized stablecoins constitute the majority of stablecoins by market capital-
ization, even before the failure of the largest algorithmic stablecoin, TerraUSD, in May 2022. See Azar et
al. (2024) for details about the different types of stablecoins. Uhlig (2022) and Liu et al. (2023) provide
additional details on algorithmic stablecoins with an emphasis on the collapse of TerraUSD.
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bets on other cryptocurrencies. Lenders of stablecoins receive high lending rates, often above
20 percent at an annual rate and about 10 percent on average, even in a period of low interest
rates. Stablecoin holders earn indirect compensation for run risk because they can lend the
stablecoin to traders. In other words, the primary market issuer does not pay interest, but
secondary lending markets compensate for the issuer’s run risk.2 It should be noted that the
US dollar (or liabilities that settle in US dollars with “no-questions-asked”) has traditionally
facilitated leverage in the traditional financial system. Traditional financial institutions,
however, are unable or reluctant to lend US dollars to finance crypto leverage, so this role
has been assumed by stablecoins.

We develop a model that computes the premium that stablecoin holders require to maintain
a traded price of $1 and connect it to the rate speculators offer to borrow the stablecoin.
Higher speculative demand for cryptocurrencies increases the lending rate on stablecoins
and, hence, their price. A less liquid portfolio of reserves increases run risk, reducing their
price. The two forces interact by pushing the peg in opposite directions. Given a demand for
crypto, the stablecoin issuer chooses the liquidity of its reserves and the supply of tokens to
maximize its profits while achieving a price of $1 for the issued tokens. We characterize these
mechanisms by proposing a model of stablecoins that nests bank-run models akin to Goldstein
and Pauzner (2005) and Kashyap et al. (2024) and models of leveraged collateralized trading
similar to Gromb and Vayanos (2002) and Fostel and Geanakoplos (2008).

Then, we turn to empirical work. First, we connect speculative demand for cryptocur-
rencies to stablecoins’ lending rate. We approximate speculative demand using the funding
rate from perpetual futures, liquid crypto derivatives that bet on cryptocurrencies. We
show that increases in speculative demand result in statistically and economically significant
increases in stablecoin lending rates: a one percentage point increase in the perpetual future
funding rate translates to roughly a 20 basis point rise in the lending rate. To account for
unobserved endogeneity, we instrument speculative demand using the viewership of Major
League Baseball (MLB) games, exploiting the sponsorship deal between MLB and FTX, a
major cryptocurrency exchange. We find similar results.

Second, we empirically establish two stabilization mechanisms to maintain the peg:
adjusting the liquidity of reserves and letting the lending rate re-adjust via token redemptions
or issuance. Data for redemptions and issuance are available at high frequency, enabling us
to map out how lower speculative demand leads first to more stablecoin redemptions and
2Other reported use cases of stablecoins could introduce non-pecuniary benefits and drive part of the demand
for them. For example, stablecoins act as a store of value between crypto trades; they may generate payment
services and offer a store of value in countries with volatile domestic currencies, or they may facilitate illicit
finance and even terrorism. See Ostroff and Malsin (2022). We show that our theoretical and empirical
results on the importance of speculation for stablecoin demand are robust to such additional use cases.
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second to higher lending rates and peg stabilization while controlling for other factors driving
the demand for stablecoins such as cryptocurrency trading activity.

Third, we apply the model to the May 2022 crypto turmoil following the collapse of Ter-
raUSD and the near run on Tether. We document how Tether experienced large redemptions
and traded considerably below its peg, but once lending rates increased and stabilized at a
higher level, Tether’s peg stabilized as well, consistent with our theoretical predictions.

Our analysis highlights the link between crypto and the real economy. Stablecoin issuers
invest their reserves to earn profits but must adjust their reserves—possibly quickly—to
maintain their peg in response to crypto shocks. Such reallocations can disrupt the money
markets in which stablecoins invest their reserves, such as Treasuries, commercial paper, and
repos.3 The reverse link from traditional to crypto markets is also incorporated in the model:
a bad shock for the traditional risky financial asset held in the stablecoin’s reserves leads to
an increase in the stablecoin’s run risk. This was the case in March 2023 during the collapse
of Silicon Valley Bank, where Circle, the issuer of the major stablecoin USDC, held part of
its reserves as uninsured deposits.4

Related Literature. Our paper relates to the two strands of literature on leveraged
collateralized trading and bank runs. We contribute by bringing these two strands together
and show how their interaction can generate the leverage-money nexus described earlier.

Brunnermeier and Pedersen (2009), Fostel and Geanakoplos (2008), Geanakoplos (2010),
and Gromb and Vayanos (2002) investigated the importance of private wealth to meet haircut
requirements in collateralized trading. Still, the literature has mostly focused on shocks to
the value of collateral that can lead to unfolding leverage and a drop in asset prices. We
show that the fragility of the “assets” in which agents hold their private wealth and use to
meet haircut requirements—stablecoin tokens in our case—can also be an independent source
of instability, interacting with speculative motives.5

In contrast, the bank-run literature has studied fragile liabilities issued by financial
institutions and has used state-of-the-art global game techniques to link institutions’ balance
3JP Morgan estimated that Tether, the largest stablecoin, was one of the largest investors in the U.S.
commercial paper market in June 2021. See https://www.ft.com/content/342966af-98dc-4b48-b997-
38c00804270a. A FOIA request from the New York Attorney General’s office showed that Tether’s
commercial paper portfolio in late 2021 was principally invested in Chinese financial companies ($5.6b).
Still, they also held $1.4b of non-financial paper (mostly from European companies) and paper issued by
three U.S. companies.

4See “Circle’s stablecoin banked at SVB and guess what happened next” (March 11, 2023). https://www.
ft.com/content/7c9b2234-c298-4508-b59a-fce49f6bc40a.

5To keep our model tractable, we do not incorporate a channel through which leverage affects asset prices.
However, such a channel could be incorporated in our analysis and could be an interesting avenue for future
work.
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sheet and profitability to the probability of a run (Goldstein and Pauzner 2005, Kashyap et al.
2024, Schilling 2023; and Morris and Shin 2003, Carlsson and van Damme 1993). However,
this literature has not connected the run risk in institutions’ liabilities to the premium they
can earn in secondary markets, which is a key focus and novelty of our paper. There is a good
reason for this. The traditional liabilities of financial institutions are not bearer instruments,
unlike private banknotes during the Free Banking Era. Tokenization renders such liabilities
fungible so investors can use them for external activities to earn additional premia. We show
how speculative motives in crypto markets matter for stablecoin peg stability using a global
game model and empirical evidence. Bolt et al. (2023) show that a fixed exchange rate or
peg can be stabilized using global game techniques in the context of a central bank (a fiat
money issuer) failing.

More narrowly, our paper contributes to the emerging literature on stablecoin stability. A
paper close and complementary to ours is Ma et al. (2023). They study the market mechanism
through which stablecoins can be redeemed for fiat currency, as most investors cannot directly
redeem with the issuer. They conclude that the number of authorized arbitragers allowed to
interact with the stablecoin issuer and request redemptions is crucial for stablecoin stability.
As we elaborate later, their mechanism could easily be incorporated into our framework
without altering our key results. In addition, the focus of our paper is different as we are
interested in the implications of crypto speculation, rather than of the redemption mechanism,
for stablecoin peg-stability. Bertsch (2023) also considers a global game to model stablecoin
run risk but focuses on the use of stablecoins in payments and their desirability over deposits.
In addition to the differences in focus, our paper empirically examines the use of stablecoins
in crypto speculation and tests the model predictions. d’Avernas et al. (2022) also study the
stability of stablecoin pegs focusing on the role of commitment by the issuer, but abstract
from run risk considerations, and their analysis is theoretical. Kozhan and Viswanath-Natraj
(2021) show that using safer collateral has led to greater peg stability for the decentralized
stablecoin DAI. Our paper features run risk, which is endogenized using a global-game
method.

Our measurement of speculative demand for cryptocurrencies, including our instrumental
identification, may be of independent interest to the literature, along with the connection
between speculation, stablecoin size, and stability. We also contribute to the literature on
asset pricing and the market structure of decentralized protocols and blockchains (Makarov
and Schoar 2022, Lehar and Parlour 2021).
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Figure 1: Model Sketch.

2 Model

Model Overview This section presents the model to study the leverage-money nexus
summarized in Figure 1. Our model features as separate agents a profit-maximizing stablecoin
issuer (Tether) and stablecoin investors who can re-use and lend the token in secondary
markets. The stablecoin issuer raises funds from investors and invests them in a portfolio of
liquid and illiquid assets. The liquid asset always trades at par, while the illiquid asset may
trade at a discount. We use global game techniques to pin down a unique probability of a
run that depends on the issuer’s balance sheet. With this probability, we can compute the
premium that stablecoin holders require to maintain a price of $1 and connect it to the rate
speculators offer to borrow the stablecoin. Higher speculative demand for cryptocurrencies
increases the lending rate on stablecoins and, hence, their price. A less liquid portfolio of
reserves increases run risk, reducing their price. The two forces interact by pushing the peg
in opposite directions. Given a demand for crypto, the stablecoin issuer chooses the liquidity
of its reserves and caters to investors’ demand for stablecoins by issuing or redeeming tokens
to maximize its profits while guaranteeing that the tokens will be traded at a price of $1.

Model Setup There are three periods (t = 0, 1, 2), four assets, and three agents. Two of
the assets are traditional, a liquid asset and an illiquid asset, and the other two are digital
assets, a stablecoin and a cryptocurrency. All assets are perfectly divisible. The first type
of agent is the stablecoin issuer and manager. The second type consists of a continuum of
investors, which are identical ex ante, but heterogeneous ex post as described below. The
third type consists of a continuum of traders that want to take a leveraged long position in
the cryptocurrency.

The stablecoin raises funds in fiat currency from investors at t = 0 in exchange for tokens,
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which are the liabilities of the stablecoin issuer and the first digital asset in the model. Denote
by s the number of tokens in circulation. Given that the issuer will offer tokens at a unitary
price, s also captures the total funds invested in the stablecoin. In turn, the stablecoin issuer
invests the funds in a portfolio of traditional assets.6 Both assets are in perfectly elastic
supply; their returns are denominated in fiat currency, and they can be bought for one unit of
fiat currency at t = 0. The liquid asset yields a gross return of one at t = 2 and can be sold
at any time before t = 2 for the price of one. The payoffs and the liquidation value of the
illiquid asset depend on the realization of a fundamental state θ ∼ U [0, 1] with its true value
realized at t = 1, but not publicly revealed. If θ ≥ θ, with θ exogenously set, the illiquid
asset yields X > 1 at t = 2 with certainty and can be liquidated at t = 1 also for X. If θ < θ,
the illiquid asset yields X > 1 at t = 2 only with probability θ and zero otherwise, while its
liquidation value drops to ξ < 1. The assumption about the liquidation value and payoffs
of the illiquid asset follows Goldstein and Pauzner (2005). Without loss of generality and
to simplify the notation when we derive the stablecoin price and the issuer’s optimization
problem later on, we will consider θ → 1. Finally, denote by ` the portion of the portfolio
invested in the liquid asset. We will also assume that both liquid and illiquid assets can be
resold between t = 0 and t = 1—that is, before the shock on the illiquid asset—for the price
of one to allow the issuer to rebalance their reserves portfolio, i.e., adjust ` if warranted.

Investors are identical ex ante and have deep pockets. At t = 0, each investor can hold
tokens issued by the stablecoin in exchange for fiat currency. Tokens are initially issued in
exchange for fiat currency and are redeemable on demand for fiat currency at a fixed exchange
rate of one.7 Following Diamond and Dybvig (1983), an individual investor receives with
probability δ an idiosyncratic preference shock urging them to redeem their tokens to use their
funds for purposes outside the digital asset ecosystem. We will call these investors impatient.
By the law of large numbers, the total expected redemption at t = 1 from impatient investors
is equal to δs. The remaining (1− δ)s investors do not have a pressing need to redeem but
can decide to do so based on private noisy signals xi = θ + εi, with εi iid∼ U [−ε, ε], about the
realization of θ at t = 1. We will call these investors patient.

The benefit to patient investors from not redeeming is that they can lend the tokens
6The issuer may also have chosen to invest in crypto assets, extend loans, or even invest in stablecoins of
other issuers and lend them out for a profit. These alternatives may be important in practice and would be
captured under the illiquid asset in our model. For our analysis, it only matters that the issuer may invest
in illiquid assets and that the stablecoin tokens issued against these reserves can be re-used by investors.

7The assumption that investors can redeem their tokens directly with the stablecoin issues and at their face
value is made for simplicity. One could introduce alternative redemption frictions in our model. For example,
we could easily introduce a fee for redemptions or authorized arbitrageurs who stand between the stablecoin
issuer and investors facilitating redemptions as in Ma et al. (2023). Both frictions would result in a lower,
potentially state-contingent, payoff for redemptions. As such, the incentive to redeem would decrease, but
all the mechanisms in our model and the implications of our analysis would remain unaltered.
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to traders that want to take exposure to the cryptocurrency, expecting a gross return
y =

∫
ỹdH(ỹ), where ỹ is the cryptocurrency return realization. Traders borrow the stablecoin

from patient investors, and, combining it with their funds, they buy a cryptocurrency on
margin, as described in detail below. For simplicity and without loss of generality, we make
four assumptions, which can be relaxed. First, we assume that patient investors do not want
to hold the cryptocurrency directly.8 Second, we assume the lending of tokens takes place
after patient investors have decided whether to redeem and have learned whether the issuer
is insolvent or not.9 Denote by R the expected return per unit of lending the token, which
will be endogenously determined. Third, we assume traders have access to an outside option
with gross return ρ. Fourth, the distribution of cryptocurrency returns is independent of the
distribution of θ.

The funding structure of stablecoin issuers is fragile because the liquidation value of its
reserves may not be enough to fully cover potential redemptions by all token holders. As
such, the stablecoin issuer is exposed to run risk from self-fulfilling beliefs. This gives rise to
multiple equilibria described in the bank run literature. To resolve this indeterminacy, we
model a global game where each individual token holder receives a private noisy signal xi
and decides to redeem or not based on their posterior about θ and their beliefs about the
actions of others. We will solve for a threshold equilibrium such that token holders decide to
redeem if their signal xi is below a threshold. Using this threshold, we can compute the ex
ante probability at t = 0 that the stablecoin may experience a run at t = 1 and the price at
which stablecoins will trade. A higher run probability pushes the price of tokens down, while
a higher lending rate pushes the price up, other things equal.

We derive the expected return from lending the stablecoin token, and given this return,
we compute the probability of a run on the stablecoin issuer and the stablecoin price at
which investors would be willing to trade tokens. Thereafter, we examine and evaluate the
peg-stabilization mechanisms in response to shocks.

Although our paper focuses on this specific use-case of stablecoins—the leverage-money
nexus—our model can easily be adjusted to include additional services, such as payment
services, as we show in an Online Appendix. Such services may become more important
8One way to microfound this assumption is to have investors that are less optimistic than traders about
cryptocurrency returns, so they would rather lend to traders who would like to take leverage as in Fostel
and Geanakoplos (2008), Geanakoplos (2010), and Simsek (2013). Alternatively, investors could be made
sufficiently risk averse at t = 2 or incur costs when holding the cryptocurrency directly. We present an
extension along the latter dimension in the Online Appendix in Section A.2.

9In practice, lenders can recall their loans within small intervals of time, for example, with one-hour notice in
FTX or instantly, if the loan terms allow it, in Aave, justifying this assumption. Our analysis would be
unaltered if lending also happened before t = 1, but investors quickly called back their stablecoins to redeem
them. See the Online Appendix Section A.4 for an extension where lending takes place before t = 1, but the
stablecoins are locked in until t = 2 corresponding to longer-term loans that cannot be quickly recalled.
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as stablecoins mature and develop a convenience yield, which should be expected to be
lower than the aforementioned lending rates.10 Similarly, it is straightforward to also allow
the stablecoin issuer to pay interest directly to investors despite the fact this has not been
the practice, as we mentioned earlier.11 As expected, these additional non-pecuniary and
pecuniary benefits would further boost the demand for stablecoin, allowing it to grow but,
as we show, would not affect the novel mechanism we highlight in our paper, which is how
speculative crypto demand interacts with stablecoin peg-stability. Hence, we have kept the
baseline model exposition simple and relegated the modeling of additional stablecoin demand
sources to the Online Appendix in section A.3.

2.1 Expected return from lending the stablecoin

In this section, we study how the expected return from lending stablecoin tokens is determined
in equilibrium. We proceed backward, assuming that the stablecoin has not suffered a run at
t = 1 and that the realization of θ has become common knowledge. Patient token holders can
lend their tokens to traders who want to take a leveraged position in the cryptocurrency. For
each dollar of cryptocurrency they buy, traders need to post m percent of margin. Assume
the cryptocurrency exchange exogenously sets m. This is not critical for our results. We
show in the Online Appendix Section A.2 how the derivation of m can be endogenized.12

The expected payoff to the trader from a leveraged position in one dollar of the cryptocur-
rency is y − (1−m)R. Note that R is the expected return to lending—not the contractual
lending rate—that incorporates the case the trader defaults. To see this, denote by Rc the
contractual lending rate and suppose ỹ ∼ H(ỹ) with y =

∫
ỹdH(ỹ). The trader defaults if

ỹ < y′ ≡ (1 − m)Rc. Conditional on issuer’s solvency, the expected return to the trader
is
∫
ỹ≥y′ (ỹ − (1−m)Rc) dH(ỹ) = y −

∫
ỹ<y′ ỹdH(ỹ)− (1−m)Rc

∫
ỹ≥y′ dH(ỹ) = y − (1−m)R,

because investors receive the collateral for ỹ < y′. Given risk-neutrality, we focus on R but
control for cryptocurrency volatility in our empirical analysis, where we use contractual
borrowing rates to account for the difference between R and Rc.
10Van den Heuvel (2022) estimates the convenience yield of deposits over same maturity Treasuries, which
should partially capture the convenience yield from payments, to be about 80 basis points in recent years.
Our model implies that reliance on smaller convenience yields should push the issuer toward a safer and more
liquid reserves portfolio, which has been the case for stablecoins that attempt to specialize in payments.

11Traditionally, stablecoins have not paid interest, but more recently, crypto firm Figure is seeking SEC
approval to issue an interest-bearing stablecoin. In Europe, the Markets in Crypto Assets (MiCA) legislation
prohibits paying interest on stablecoin tokens.

12An additional advantage of buying the cryptocurrency with a stablecoin token is that there are small or no
haircuts on the pledgeable dollar value. Thus, the dollar value that traders must post to meet margin m
is equal to m under a zero haircut, and they only need to borrow 1 −m stablecoin tokens per dollar of
exposure to the cryptocurrency. For other cryptocurrencies, the haircuts are higher, and traders must post
a higher dollar value than m to meet the margin requirement (see Table A.1 in the Online Appendix).
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Traders compete and, in equilibrium, offer an R that makes them break even with their
outside option ρ, which depends on the aggregate funds invested in the alternative technology,
but traders take it as given. If they break even, traders will not invest in the outside
option. The equilibrium R is then given by equating levered profits per unit of investment,
(y − (1−m)R)/m, to the unlevered outside option profit per unit of investment, ρ, or

R = y −mρ
1−m . (1)

We assume that the outside option consists of a technology, F , common to all traders,
with decreasing marginal returns depending on the aggregate amount of funds invested
(F ′ > 0, F ′′ < 0). Denote by e the total funds of traders and by m(1− λ)s/(1−m) the total
funds invested in leveraged cryptocurrency trades, where λ is the number of tokens redeemed
at t = 1 and not available for lending. Then, ρ in equilibrium is given by

ρ = F ′
(
e− m

1−m(1− λ)s
)
. (2)

We assume that the lower bound for the outside option, when s = 0, satisfies F ′(e) > y,
such that traders have an incentive to use leverage, resulting in R < y.13 Moreover, there
might be a s̄ such that y −mρ < 0 for s > s̄. The number of tokens in circulation may be
so high that there is no benefit to lending them. Thus, we will also assume that s̄ is high
enough such that there is room for the number of tokens to adjust while still paying positive
interest when lent out.

Combining 1 and 2, we get that the lending rate as a function of outstanding tokens
(1− λ)s at t = 2, where λ is the percentage of early redemptions:

R(λ, s) =
y −mF ′

(
e− m

1−m(1− λ)s
)

1−m . (3)

Before determining how runs on the stablecoin issuer occur, we present the following
comparative statics that will be important for what will follow in Sections 2.2 and 2.4 (see
Section A.1.1 for detailed derivations):

dR(λ, s)
dy

> 0 & dR(λ, s)
dm

< 0 & dR(λ, s)
ds

< 0 & dR(λ, s)
dλ

> 0. (4)

Changes in y and m could be interpreted as higher demand for cryptocurrencies and
13Otherwise, the relevant outside option may be ρ = y since traders would prefer to invest directly in the
cryptocurrency. In that case, R = y, which is independent of the stablecoin supply s, and the redemption
channel for peg-stability would be absent.
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higher cryptocurrency volatility or risk, respectively. Both changes affect the lending rate R,
destabilizing the stablecoin peg. Changing the number of tokens, s, is one way to undo the
change in the lending rate and re-stabilize the peg; for example, a decrease in s following
a decrease in y could bring the lending rate back to its original value. We elaborate on
this stabilization mechanism in detail in section 2.4 after we show how the liquidity of the
stablecoin’s reserves matters for run risk and, thus, for its peg stability.

2.2 Probability of a stablecoin run

Redemptions and Issuer’s Portfolio. The issuer collects funds at t = 0 equal to s,
invests ` percentage of them in the liquid asset, and invests the rest in the illiquid asset.
If the issuer defaults, the stablecoin holders cannot lend their tokens and earn a lending
rate but are distributed pro-rata the remaining assets of the issuer. The expected payoff
to an individual patient investor if only impatient investors redeem, i.e., λ = δ, is equal to
θR(δ, s) + (1− θ) max(`− δ/1− δ, 0), since the issuer defaults with probability 1− θ.

Yet, the issuer may fail even when the illiquid asset pays out X, which occurs with
probability θ, if enough patient investors decide to redeem their tokens. If θ ≥ θ, the issuer
has enough liquidity to serve all possible redemptions. If θ < θ, every individual patient
investor will redeem independent of what other investors choose to do.14 For intermediate
realizations of θ ∈ [θ, θ), the issuer does not have enough liquidity to serve all possible
redemptions because the liquidation value of the illiquid asset drops to ξ < 1. The liquidity
position of the issuer at t = 1 is L(λ) = [`+(1− `)ξ−λ]s, where λs are the total redemptions,
with λ ∈ [δ, 1], depending on how many patient investors decide to redeem. Hence for λ > λ(ξ)
the stablecoin issuer does not have enough liquidity to serve all redemptions, where λ is the
solution to L(λ) = 0, i.e.,

λ = `+ (1− `)ξ. (5)

Conditional on having enough liquid resources (λ ≤ λ) and with probability θ, the profits
of the stablecoin issuer at t = 2 as a function of λ are given by

Π(λ) =
[
X(1− `)

(
1− max(λ− `, 0)

ξ(1− `)

)
+ max(`− λ, 0)− (1− λ)

]
s. (6)

That is, the issuer extracts all seigniorage after repaying remaining stablecoins at par. The
issuer first uses the liquid asset for redemptions and then starts liquidating the illiquid asset.
This is optimal since the liquid asset has a higher liquidation value, while the risky one has a
14θ is given by [1−max(` − δ/1 − δ,0)]

[R(δ,s)−max(` − δ/1 − δ,0)] .
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higher expected payoff. For λ ≤ `, Π(λ) > 0. For higher λ and because dΠ(λ)/dλ < 0, the
stablecoin issuer becomes insolvent at t = 2 for λ > λ̂(ξ), given by Π(λ̂(ξ)) = 0, i.e.,

λ̂ = X(`+ ξ(1− `))− ξ
X − ξ

. (7)

Moreover, we can re-write λ̂(ξ) = (Xλ(ξ) − ξ)/(X − ξ) < λ(ξ), i.e., the issuer becomes
insolvent before running out of liquidity.

Finally, note that conditional on having enough liquid resources (λ ≤ λ) and with
probability 1− θ, the issuer always defaults, and any unused liquid assets max(`− λ, 0) are
distributed pro-rata to the remaining 1− λ investors.

Redemptions and Investor Payoffs. A patient investor needs to decide at t = 1 whether
to redeem their token. The payoff differential between not redeeming and redeeming depends
on the beliefs about θ and λ:

ν(θ, λ) =



θR(λ, s) + (1− θ) max
(
`−λ
1−λ , 0

)
− 1 if δ ≤ λ ≤ λ̂

θ
X(1−`)(1− λ−`

ξ(1−`))
1−λ − 1 if λ̂ < λ ≤ λ

− `+(1−`)ξ
λ

if λ < λ ≤ 1

. (8)

If the belief about λ is below λ̂, an investor that does not redeem receives the payoff from
lending out the token, R(λ, s), with probability θ. If the issuer defaults, with probability
1−θ, the residual assets are distributed pro-rata, yielding max((`−λ)/(1−λ), 0) per investor.
Redeeming yields one dollar, since the issuer has enough liquidity to meet redemptions. For
λ ∈ (λ̂, λ], investors that do not redeem receive pro rata the remaining assets in insolvency;
investors that redeem receive one dollar since the issuer has enough liquidity to serve all
redemptions. The issuer depleted all liquid assets for this level of λ, so investors are only
distributed the proceeds from the remaining illiquid assets at insolvency. Finally, for λ > λ,
the benefit from not redeeming is zero, as the stablecoin issuer will be fully liquidated; the
benefit from redeeming is joining the line in the run and being able to redeem at par with
probability (`+ (1− `)ξ)/λ, according to sequential servicing. Figure 2 plots for a certain
parametrization and some value of θ, the payoff differential ν(θ, λ) as beliefs about λ vary.

Defending the Peg. Figure 2 is useful to understand the (in)ability of the issuer to defend
the peg. For λ ≤ λ̂, the issuer will first liquidate the liquid asset and then the illiquid asset
to meet redemptions. Thus, investors can earn the expected lending rate R(λ, s), which is
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Figure 2: Payoff differential ν(θ, λ) as beliefs about λ vary

increasing in the number of redemptions. A higher lending rate is a stabilizing force that
helps the issuer defend the peg. But for λ > λ̂, the issuer becomes first insolvent and then
illiquid, and cannot defend the peg, because the liquidation value of the illiquid asset drops
to ξ < 1. The decision to redeem, which we derive next, will depend on beliefs about total
redemptions and, hence, the ability of the issuer to defend the peg.

Redemption Decision and Determinants of Run Risk. Following standard steps
from the global games literature we can derive the following condition that determines a
unique run threshold θ∗ (see Section A.1.2 for detailed derivations and the proof of existence
and uniqueness of θ∗):

∆̄∗ =
∫ λ̂

δ

[
θ∗R(λ, s) + (1− θ∗) max

(
`− λ
1− λ, 0

)
− 1

]
dλ

1− δ

+
∫ λ

λ̂

θ∗X(1− `)
[
1− λ−`

ξ(1−`)

]
1− λ − 1

 dλ

1− δ −
∫ 1

λ

`+ (1− `)ξ
λ

dλ

1− δ = 0. (9)

The run threshold θ∗ implies a run probability θ∗, which is a function of the lending rate
R given in (1) and the ratio of liquid assets in total assets, `. θ∗ changes with y, m, s, and `
as follows (see Section A.1.3 in the Online Appendix for detailed derivations):15

dθ∗

dy
< 0 & dθ∗

dm
> 0 & dθ∗

ds
> 0 & dθ∗

d`
< 0. (10)

15 dθ∗

d` < 0 is true under a weak sufficient condition derived in the Online Appendix, supported by the data.
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2.3 Stablecoin Price

In this section, we compute the price for one stablecoin token given the lending rate R derived
in Section 2.1 and the run threshold θ∗ derived in Section 2.2.

Given that stablecoin tokens are traded in secondary markets, we compute the price at
which investors are willing to trade their stablecoin tokens. Note that this price is different
from the cost of getting a token from the issuer or the payoff from (successfully) redeeming a
token at the issuer, both of which are set to one. Moreover, we derive the stablecoin price
before the realization of θ and the resolution of uncertainty about the possibility of a run.

Denote by P the market price of traded stablecoin tokens, which is given by

P =
∫ 1

θ∗

{
(1− δ)

[
θR(δ, s) + (1− θ) max

(
`− δ
1− δ , 0

)]
+ δ

}
dθ+

∫ θ∗

0
(`+ (1− `)ξ)dθ, (11)

as θ → 1. The market capitalization of the stablecoin is equal to P · s.
The first term in (11) is the expected payoff conditional on no run on the issuer. For

patient investors, this is equal to the expected value of being able to lend out the token, and
the expected repayment should the issuer default, while for impatient ones, it is equal to the
par value of the token. Note that the lending rate is equal to R(δ, s) because δ impatient
investors have redeemed their tokens at t = 1. The second term is the payoff conditional on
a run, which is equal to the liquidation value of the issuer’s asset portfolio for a dollar of
tokens held and is the same for patient and impatient investors as all withdraw in a run.

Hence, P reflects investors’ valuation for one token and is equal to the secondary market
price that investors would be willing to trade stablecoins among themselves before the
realization of uncertainty at t = 1. Note that during a run, our model predicts that the
secondary market price should drop to `+ (1− `)ξ, i.e., the expected payoff from redeeming
a token. As already mentioned, trading frictions may exist for redeeming tokens, for example,
due to the presence of authorized arbitragers (Ma et al. 2023), under which the payoff for
θ < θ∗ in (11) would need to be adjusted. As mentioned, we abstract from such considerations
to keep the analysis simple and leave these interesting extensions for future work.

The effect of the demand and riskiness of cryptocurrencies, as well as the size and liquidity
of the stablecoin on P , are summarized as follows (see Section A.1.4 for detailed derivations):

dP

dy
> 0 & dP

dm
< 0 & dP

ds
< 0 & dP

d`
. (12)

Intuitively, a higher y, and lower m or s, increases the payoff conditional on a run not
occurring and decreases the probability of a run, both of which push P up. Similarly, a higher
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` decreases the probability of a run but also increases the probability of being paid conditional
on a run occurring, both of which push P up. In sum, the stablecoin price may fluctuate not
only in response to shocks in the expected return and riskiness of the cryptocurrency but
also due to adjustments in the size and liquidity of the stablecoin. In section 2.4, we discuss
the mechanisms through which the size and liquidity of the stablecoin can stabilize the peg
in response to crypto shocks.

2.4 Peg stability

We show how the issuer can maintain the peg in response to shocks. We make a distinction
between stabilizing the peg, discussed in this section, and defending the peg, discussed in
section 2.2. We view stabilizing the peg as the actions the issuer can take to maintain the
peg before the realization of fundamentals’ uncertainty, that is, between t = 0 and t = 1.
By contrast, defending the peg corresponds to the (in)ability of the issuer to survive a run
at t = 1 when uncertainty about θ and ξ is realized. This distinction is important because
stablecoins are traded continuously, and they may trade above or below their peg even
outside run episodes, which are only characterized by peg devaluations. At the center of the
distinction is whether the issuer incurs portfolio rebalancing costs when changing the share
of liquid assets held in reserves. Such costs are captured in the model by a potentially lower
liquidation value for the illiquid asset after, but not before, t = 1.

As such, we focus here on how crypto shocks that may arrive between t = 0 and t = 1
can destabilize the peg, that is, move P above or below 1. Given that the liquid and illiquid
assets can be sold for one before t = 1 and there are no other portfolio rebalancing costs,
we do not need to track the portfolio allocation of the stablecoin issuer before the shock; we
only need to compute the new portfolio allocation after the shock, resembling a comparative
statics exercise. We could easily complicate the analysis by introducing an intermediate
period between t = 0 and t = 1 when crypto-related shocks materialize and track the portfolio
allocations, yet the results we derive below for peg stability would remain unaltered.

There are two mechanisms to maintain the peg. The first mechanism relates to how `

should vary and proxies for how close to money stablecoins are. The second mechanism
relates to how s should adjust and is driven by the usefulness of stablecoins in leveraged
crypto trades as captured by the lending rate R. The issuer directly controls ` but passively
issues or redeems tokens based on investors’ demand for stablecoins, which affects s. If the
price of stablecoins in secondary markets is higher than 1, then investors will purchase more
tokens from the issuer at a price of 1 and sell them at the market to make a profit, which
increases s. If the price in secondary markets is lower than 1, then investors will redeem with
the issuer to receive 1 and make a profit, which decreases s. Hence, the issuer sets the price
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for issuing/redeeming tokens and caters to investors’ demand. However, when choosing `,
the issuer understands how investors will react—demanding new tokens or redeeming their
existing ones,—which continues until the secondary price is equal to the price that the issuer
issues/redeems tokens, i.e., equal to 1. In other words, the issuer can infer the level of `, given
a level of s, that is needed to stabilize the secondary price to 1. This problem is equivalent to
one under which the issuer jointly chooses ` and s subject to a constraint that the secondary
price is equal to 1. As such, we will be referring below to the issuer choosing jointly ` and s.
It should be clear that the issuer does not set directly s, but can choose it indirectly.

Before deriving the optimal choices, we examine how changes in y and m between t = 0
and t = 1 matter for how ` and s should be adjusted to maintain P = 1. A change in y, with
m constant, could be interpreted as higher demand for cryptocurrencies. A change in m,
with y constant, could be interpreted as higher volatility or risk for cryptocurrencies.

Proposition 1. A decrease in demand for the cryptocurrency or an increase in its riskiness
pushes the stablecoin price below its peg. To stabilize the peg, the stablecoin issuer can either
increase ` keeping s the same, keep the same ` and allow lower demand for tokens to manifest
in more redemptions and lower s, or jointly increase ` and decrease s. The opposite is true
for higher cryptocurrency demand or lower riskiness.

The proof of Proposition 1 is straightforward. From equation (A.17), we know that a
decrease in y or an increase in m results in a lower price of the tokens P . Therefore, ` needs
to increase to maintain the peg for a certain s (equation A.18). Alternatively, the issuer may
keep the same `. This results in lower demand for the stablecoin tokens, and more investors
will want to redeem their tokens. A lower number of tokens, s, results in a higher P , and the
stablecoin price can return to its peg.

At the heart of the stabilization mechanism to crypto shocks is the interplay between
prices and quantities: the issuer caters to the demand of investors by issuing more tokens at
one dollar when the secondary market price P is greater than one and redeeming tokens at
a dollar when P is lower than one. This hard-wired adjustment in the quantity of tokens
outstanding offers the issuer an additional degree of freedom to choose the level of ` that
maximizes their seigniorage but at the same time introduces volatility in the quantity of
tokens outstanding which we exploit in the empirical analysis in Section 4.

As an aside, recall that the issuer cannot freely adjust ` to defend the peg at t = 1 in
the cases that the liquidation value of the illiquid asset drops to ξ < 1, introducing portfolio
rebalancing costs (see Section 2.2). The stabilization mechanism via ` would go in the
opposite direction as the issuer would first sell the liquid asset to meet redemptions, effectively
increasing the share of illiquid assets in reserves. The stabilization mechanism via s would
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still be operational, but its effectiveness would vanish after the level of withdrawals that
pushes the issuer to insolvency; we show in Figure 2 that the payoff from not redeeming
increases as s decreases, as long as the issuer remains solvent. Defending the peg at t = 1
should not be confused with stabilizing the peg in normal times studied below.

Token Supply and Stablecoin Liquidity under Observability. We derive the equi-
librium ` and s when both ` and s are observable. Observability implies that the issuer can
write a complete contract, such that the issuer internalizes how ` and s affect the stablecoin
price P . Absent other frictions that may be important in practice but from which we have
abstracted, observability delivers the optimal solution under commitment and, thus, the issuer
would want to make ` observable (and verifiable). Doing so would result in higher profits
compared to the solution under non-observability and lack of commitment. We elaborate
below on developments in the digital asset ecosystem that can push toward the observability
of reserves.16 The case that ` is unobservable is derived in the Online Appendix Section
A.5.17 Our key points continue to hold under unobservable `, but, contrary to the case of
observability, the stablecoin is not viable for low enough levels of speculative demand.

The issuer maximizes their profits from seigniorage (recall that θ → 1),

max
`,s

∫ 1

θ∗
θΠ(δ)dθ, (13)

subject to P = 1 as discussed above. Π(δ) are the profits when only impatient investors
withdraw, and the issuer does not default—with probability θ—given by (6) for λ = δ.

The issuer internalizes how ` and s affect the run threshold and the lending rate, which
can be expressed as functions of ` and s using (9) and (3) and substituted in the issuer’s
optimization problem. Combining the optimality conditions for ` and s yields

1− (θ∗)2

2

(
dΠ(δ)
d`

− Π(δ)
dP/d`
dP/ds

)
+ θ∗Π(δ)

(
dθ∗

ds

dP/d`
dP/ds

− dθ∗

d`

)
= 0, (14)

which together with the peg stability condition P = 1 yields the optimal (`, s).
As mentioned, P can deviate from 1 in response to shocks until the issuer resets ` and

s to restore the peg. The optimal ` and s derived above require observability. In principle,
it is feasible for stablecoin arrangements to be backed by on-chain assets—either other
cryptocurrencies or tokenized traditional financial assets—such that ` is observable in real-
time along with s. Yet, the biggest stablecoins are currently backed by off-chain financial
16See Kashyap et al. (2024) for similar modeling of complete and incomplete deposit contracts with run risk.
17s is always observable, given that the number of tokens in circulation is reported on the blockchain in
real-time.
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assets and disclose their reserves only infrequently, at best.18 Thus, the peg stabilization
studied above would work when ` is observable at disclosure dates. Between these dates,
peg stability after a shock could again be achieved, but the issuer will have an incentive to
deviate from the choice of ` studied herein, discussed in the Online Appendix as mentioned.

Finally, using (14) we can show that the issuer will optimally choose ` < 1 and thus expose
the stablecoin to runs, as long as speculative demand to crypto is high enough and, thus, the
return from lending the stablecoin is higher than 1. First, consider that y > 1 +m[F ′(e)− 1]
such that R(δ, s) > 1 for some s > 0. Now, suppose that ` = 1 such that θ∗ → 0. Then,
(14) is negative, because dΠ(δ)/d` < 0|`=1. Intuitively, the issuer makes zero profits for
` = 1, so accepting some run risk by decreasing ` is optimal; and investors’ participation
constraint is not violated because R(δ, s) > 1 can support some level of run risk. Next,
consider y ≤ 1 +m[F ′(e)− 1], which means that R(δ, s) ≤ 1 for any s. Investors would never
hold the stablecoin for the purpose of lending it out and will only keep it if the run probability
is zero and the token is always worth 1. The issuer can guarantee that by setting ` = 1;
otherwise investors would immediately redeem their tokens if there were a shock pushing y
below the aforementioned threshold.19 Proposition 2 summarizes these results.

Proposition 2. Consider that both ` and s are observable. For y > 1 +m[F ′(e)− 1], ` < 1
is optimal. Otherwise, the issuer sets ` = 1.

The aforementioned result hinges upon two modeling choices. First, the liquid asset pays
zero interest in our baseline analysis. It is easy to see that the issuer’s profits would be
positive for ` = 1 if the liquid asset paid interest. The reason is that the issuer pays no
interest to stablecoin investors and, thus, extracts all seigniorage. Still, by continuity, there
are positive (sufficiently close to zero) interest rates such that the issuer will optimally choose
` < 1. However, for high enough interest rates, the issuer may prefer to avoid taking any
run risk and set ` = 1. We have included in the Online Appendix section A.6 analysis that
confirms these additional results. Our empirical analysis later on considers the period of
December 2020 to November 2022, during which interest rates were (near) zero until March
2022 and started increasing thereafter. This configuration of interest rates is consistent with
our model prediction that ` < 1 as well as the stylized fact that stablecoin issuers did not
invest solely in liquid assets during this period (see section 4). However, as the interest rate on
liquid assets kept increasing and stabilized at higher levels in 2024, stablecoin issuers started
18There might be pressure from the industry to start disclosing the composition of reserves more frequently.
Following the collapse of UST and the run on USDT in May 2022, USDC has started reporting their
reserves weekly, potentially putting pressure on other stablecoin issuers to follow suit in the future.

19Although not explicitly modeled in order to keep the analysis simple, one could think of reasons the issuer
may prefer setting ` = 1 rather than having all investors redeem, presumably because the negative shock
on y is transitory and scaling up the stablecoin from scratch may entail considerable fixed costs.
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holding predominantly safer liquid assets such as Treasuries and Treasury repo, consistent
with the analysis in the Online Appendix. It is an open question whether issuers will start
investing again in less liquid assets should interest rates normalize to lower levels and crypto
speculation pick up.

Second, we have assumed a monopolistic issuer with full market power. By choosing `
the issuer indirectly controls the demand for tokens s and, thus, the level of compensation to
investors via the lending rate. Competition from other issuers would result in safer stablecoins
and a higher supply of tokens. To see this, consider the following experiment. Start with a
monopolistic issuer that chooses an observable ` < 1 as outlined in Proposition 2. Suppose
now that a second issuer enters the market and issues tokens that are perfect substitutes
for the ones of the incumbent issuer. Then, the entrant can choose an observable `′ > `

attracting all the investors from the incumbent given the lower run risk. The incumbent
can respond by also choosing `′′ and so on until both issuers choose ` = 1. In equilibrium,
the total supply of tokens will also increase as issuers choose higher `, reaching a saturated
level. It should be noted that the aforementioned argument relies on the assumption that
the tokens of competing issuers are perfect substitutes. Under imperfect substitutability,
competition may result in higher ` than the one in Proposition 2 but still lower than one.
Indeed, the current stablecoin market dynamics may suggest a bifurcation between the two
biggest stablecoins, Tether and USDC, that try to cater to different types of clientele and
use cases. Section A.3 in the Online Appendix shows how our model can be extended to
encompass additional use cases that can differ by stablecoin. As such, individual issuers
can maintain some market power, and our mechanism can remain operational even under
stablecoin competition.

A corollary of Proposition 2 under additional use cases is that imperfectly substitutable
stablecoins would choose different levels of ` and, thus, be exposed to different levels of run
risk parameterized by θ∗. Then, it is conceivable that stablecoin investors would prefer to fly
from riskier stablecoins to safer ones during a market turmoil instead of flying back to fiat.
The reason is that a realization of θ that makes the riskier stablecoins fragile may not be
severe enough to generate concerns for the safer ones. These flight-to-quality dynamics were
apparent during the TerraUSD 2022 debacle when investors flew from Tether to USDC (Liao,
2022) or from USDC to Tether during the Silicon Valley Bank (SVB) crisis in March 2023
out of concerns about the uninsured deposits Circle held at SVB.20

20“Crypto’s brush with disaster after SVB collapse”, March 17, 2023, https://www.ft.com/content/f48999ce-
6237-48e9-aaab-3926d0c80797.
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3 Institutional Details and Data

3.1 Leverage

Leverage is a critical feature of crypto markets. Crypto traders often speculate with leverage,
and centralized exchanges provide leverage as a key service. Crypto traders can get leverage
in several ways. We focus on two products offered by centralized exchanges: margin trading
and futures derivatives. There are several other mechanisms to get leverage at centralized
exchanges and on the blockchain: levered tokens and options, to name a few. We focus on
futures and margin trading as they are two long-standing and large sources of leverage. While
data on the levered trading volumes are scarce, open interest across all crypto derivatives
was $250 billion in June 2022, the vast majority of which likely comes from perpetual futures
derivatives.21 Data on margin lending are even more incomplete but likely exceed tens of
billions of dollars.

Margin Trading. Margin in crypto is like margin trading in traditional finance: levered
traders borrow the coin for a specified time at a given interest rate and use it with their own
funds to take a position on a cryptocurrency. Margin trading can be used to take long or
short positions. The main difference from traditional margin is that offshore crypto exchanges
generally do not comply with Regulation T or other similar requirements.

Futures Derivatives. Traders can also get leverage using futures—not unlike traditional
finance futures—many of which are perpetual futures that do not have an explicit expiration
date, as indicated by their name. Perpetual futures are likely the largest and most liquid type
of offshore cryptocurrency derivatives and, at times, can offer more than 100 times leverage.

For a traditional vanilla future, the future and spot prices converge as the expiration
date approaches. Such phenomena do not happen with perpetual futures. Instead, perpetual
futures use a funding premium to keep the spot and future price linked. If the future trades
at a premium to the spot price, the investors that are long the future must pay a funding
premium to investors that are short. On the rare occasion that the future price trades at a
discount to the spot price, the investors short the future must pay a funding premium to
investors that are long. For simplicity, we will say the funding premium is positive when
investors that are long the future pay a fee to investors that are short. The details vary across
exchanges, but the funding payments are paid daily or more frequently. Perpetual futures
are typically stablecoin-settled, meaning that the perpetual future is quoted and settled in a
21https://coinmarketcap.com/rankings/exchanges/derivatives/
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stablecoin, and funding payments are paid in the stablecoin. A BTC/USDT perpetual future,
for example, is settled in USDT.

Investors may prefer to obtain leverage from either futures or margin trading. Margin
trading has two advantages. First, the borrowed coins are fungible and can be used to settle
spot transactions. Second, margin trading allows investors to take levered trading positions
at spot market prices. Alternatively, futures allow investors to take a levered position in a
coin, but they do not obtain the underlying coin until the future’s expiration unless it is a
perpetual future, in which case the investor never receives the underlying coin. Limits to
arbitrage cause persistent dislocations, often preventing the future price from equaling the
spot price. Futures, however, are generally larger markets and allow levered exposure for
extended periods.

3.2 Data

Our analysis will focus on the largest stablecoin, Tether, and on centralized exchanges (CEX),
such as Binance and FTX (our analysis ends just before FTX’s collapse). There are several
reasons for this. First, centralized exchanges remain the most popular way to trade crypto-
assets on secondary markets, even though decentralized (DeFi) exchanges have grown in
popularity over the past few years (see Watsky et al. 2024). Second, Tether has been by far
the largest stablecoin, and it is used considerably more for crypto trading and speculation
than the next largest collateralized stablecoin, USDC. In addition, the correlation between
Tether coins in circulation and crypto asset returns is non-trivial and much more pronounced
than the correlation between USDC coins in circulation and crypto asset returns.22 Third,
Tether has not paid interest even though it has been scrutinized and questioned about its
non-trivial run risk. This fact supports our choice of Tether for our empirical analysis. Finally,
Tether is the predominant stablecoin used to quote and settle perpetual futures, which enable
speculative levered bets on cryptocurrency. For example, 82 percent of derivative trading
on Binance—the biggest centralized exchange—was settled in Tether, with daily volume of
$39 billion in April 2022. By comparison, 7.6 percent was settled in BUSD and 0 percent in
USDC.

We collect prices, volume, and market capitalizations of cryptocurrencies from CoinGecko.23

We collect margin lending rates from FTX. We focus mainly on Tether (USDT), but we also
show results for Dai (DAI), which is the third biggest stablecoin, though much smaller. We
22See Liao et al. (2023) for a comparison between Tether and USDC relating to crypto trading and speculation
as well as Konig (2023).

23For details on how Coingecko aggregates information across several exchanges to calculate prices, see
https://www.coingecko.com/en/methodology.
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do not include USDC in our analysis because it is not widely used in centralized exchanges
and less so for crypto speculation.24

How big is stablecoin margin lending? It is difficult to estimate precisely, as data from
centralized exchanges is unavailable for many of the largest exchanges, implying that estimates
are subject to uncertainty. Still, our limited information suggests that USDT’s total margin
lending has been, on average, about $10 billion, amounting to between 10 and 20 percent
of the total market capitalization of USDT.25 However, note that a large portion of USDT
outstanding is held in inactive or “cold” wallets, which may account for 50% of total wallets.
If we account for USDT actively used, it, effectively doubles the percentage of USDT used
for lending to between 17 and 34 percent.26 This percentage increases further if we focus on
USDT held at centralized exchanges as calculated by GlassNode, which peaked at $15 billion
in June 2022. This last figure suggests that more than half of USDT held at CEX—and thus
for the purpose of trading—were used for lending.

We collect perpetual future funding premia from Binance, which is likely their largest
market.27” We collapse higher-frequency data on lending rates, funding premia, and prices to
a daily frequency using daily averages after converting them to U.S. Eastern time.28 We use
implied volatility for BTC and ETH calculated by T3 using option prices. Our sample runs
from December 1, 2020, to November 5, 2022. The sample does not include the period of
FTX’s collapse, which began on November 6, 2022.29

Table 1 presents the summary statistics for the main variables, including the stablecoin
prices and lending rates and the funding premium for BTC/USDT and ETH/USDT. The
24In the Online Appendix Section A.7, we show that FTX’s lending rates are highly correlated with other
lending rates in the digital asset ecosystem and so are not idiosyncratic to FTX. Moreover, Table A.2 in the
Online Appendix regresses FTX’s Tether lending rates on decentralized finance (defi) platforms’ lending
rates. In general, FTX’s lending rates are more correlated with the largest lending platforms, as measured
by total value lock. It should be noted, however, that a direct comparison between margin loan contracts
in centralized exchanges and decentralized lending platforms is complicated because of different degrees
of collateralization as well as underlying liquidity; as explained earlier, Tether is mostly used for taking
leverage in centralized exchanges.

25As mentioned, CEX trading dominates DeFi trading during our sample period. Our calculations are based
on FTX data and assume that FTX’s share of total centralized exchange trading volume (using data from
Cryptocompare) equals its share of total margin lending across centralized exchanges.

26This definition of cold USDT-wallets corresponds to wallets that have not moved their USDT for 3 months.
Extending the period of inaction to 6 months reduces the percentage of cold wallets to 35 percent. Source:
Glassnode.

27The funding premium at Binance is the sum of two components: a fixed interest rate and a premium. The
premium is a function of the spread between the future and spot price.

28We remove one hour of outlier data from USDT’s lending rate on August 10, 2021, at 6 am because it
is implausibly high and likely a data entry error. Lending rates are available in hourly snapshots until
September 2022, when FTX’s API switched to providing daily instead of hourly data.

29The run began after a tweet by the CEO of Binance that Binance would sell its FTT tokens: https:
//twitter.com/cz_binance/status/1589283421704290306.

22

https://twitter.com/cz_binance/status/1589283421704290306
https://twitter.com/cz_binance/status/1589283421704290306


Days (N) Mean Std. Dev. Min Max
Stablecoin Prices ($)

USDT (Tether) 705 1.0010 0.0022 0.9919 1.0114
DAI (Dai) 705 1.0013 0.0024 0.9912 1.0109

Margin Lending Rates (annualized percent)
USDT 705 7.95 9.99 1.00 66.03
DAI 650 7.22 10.28 0.88 73.99

Perpetual Futures Funding Rate (annualized percent)
BTC/USDT 705 18.98 30.48 −32.02 172.30
ETH/USDT 705 21.23 40.32 −239.65 215.45

Table 1: Summary Statistics. Table gives summary statistics for stablecoin prices from Coingecko,
stablecoin margin lending rates from FTX, and perpetual futures funding rates from Binance. Sample runs
from December 1, 2020 to November 5, 2022.

average price of both stablecoins is close to $1, as expected. The average lending rate is 8
percent for USDT and 7 percent for DAI. Relative to prices, the lending rates are more volatile.
The average funding premium is 19 percent for BTC/USDT and 21 percent for ETH/USDT,
indicating that the future price typically exceeds the spot price for both contracts.

As an aside, we show in the Online Appendix in Table A.3 that the lending rates for
USDT and DAI are not related to short-term interest rates in the traditional financial system,
proxied using the effective fed funds rates. Changes in the stablecoin lending rates have no
relationship with changes in the fed funds rate on a daily basis.

4 Empirical Results

We have three sets of results. First, we show that stablecoin lending rates are tightly linked
to speculative demand for cryptocurrencies. Second, we test Proposition 1, which shows how
stablecoins maintain their peg by linking cryptocurrency demand and risk to the stablecoin
issuer’s liquid asset share and token issuance or redemptions. Third, we apply the model to
the May 2022 turmoil in crypto markets following the collapse of TerraUSD.

Some clarifications are in order when taking the model predictions to the data. In
particular, we made a distinction between stabilizing the peg and defending the peg, based on
the ability of the issuer to re-balance their portfolio without incurring costs that could trigger
run dynamics. This distinction is meaningful since the “liquid asset portfolio share channel”
for peg stabilization matters only in the former case, while the “redemption channel” is
operational both when stabilizing and defending the peg. However, it is not straightforward to
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empirically distinguish these two cases for the redemption channel, especially without detailed
data about the type of assets that the issuer sells to meet redemptions and the potential
price discount. At the same time, it is more likely that the more severe depeggings during
narrative self-fulfilling run episodes, like the run on Tether in May 2022, are associated with
what we describe in the theoretical analysis as “defending the peg”. Thus, in our empirical
analysis below, we will try to isolate such narrative run episodes to study separately how the
redemption channel and lending rates may help stablecoin weather a run.

Finally, note that we have focused our analysis on the effect of speculative demand on
the ability of stablecoins to manage their peg in response to crypto shocks. However, the
role of stablecoins in facilitating speculative levered positions should also matter for the
adoption of stablecoins over the crypto cycle along with the other reasons why crypto market
participants choose to hold stablecoins. Figure A.1 in the Online Appendix plots our measure
of speculative demand (described below) along with the daily change in Tether’s market cap,
pointing to a positive contribution of speculative demand to Tether’s adoption. However, we
should note that studying the drivers of stablecoin adoption is outside the scope of our paper.
See Gorton et al. (2022) for a relative evaluation of several factors that contribute to the
adoption of stablecoins as a means of payment.

4.1 Lending Rates and Expected Speculative Returns

We show that when the expected return for the speculative asset—y in the model—increases,
the stablecoin lending rate grows, as depicted in equation (A.1).30 Speculators’ expected
returns are challenging to measure. Because cryptocurrency expected returns are not directly
observable, we use perpetual futures funding rates to infer the speculative demand. Futures
funding rates reflect the cost investors face to take leverage. We argue that the magnitude
of the annualized funding rates is directly related to speculative cryptocurrency demand
because no other liquid products provide similar levels of leverage as the perpetual futures.

We proxy for expected returns using the BTC/USDT perpetual future on Binance, likely
the largest perpetual future contract in the world. Figure 3 shows the time series of the
annualized funding rate of Binance’s BTC and ETH USDT-settled perpetual futures. The
funding rate is typically small but positive, indicating that investors who want to take
levered long positions must pay a fee. In the Online Appendix Section A.7, we check that
Binance’s BTC/USDT perpetual futures funding rate is a robust proxy for expected returns.31

One concern is that using the BTC/USDT perpetual futures as a proxy of y overweighs
30In the Online Appendix Table A.4, we also confirm the model’s prediction about the relationship between
the outside option ρ and stablecoin volumes. We find that net stablecoin issuance coincides with higher ρ,
described in Table A.4 and consistent with the prediction that ρ is increasing in s as shown in (2).

31See Table A.5, which presents the correlation of our main measure of y with several other potential measures.
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Figure 3: Perpetual Futures Funding Rate. Figure plots the annualized funding rate of USDT-settled
Bitcoin perpetual futures for Bitcoin and Ether on Binance. A positive funding rate indicates that long-future
investors make payments to short-future investors. Series are seven-day trailing averages.

idiosyncrasies specific to Bitcoin. But the BTC/USDT and ETH/USDT perpetual futures
funding rates are tightly linked with a correlation coefficient of 0.89. Binance also has
perpetual futures that settle in Binance USD, another stablecoin. The funding rates across
perpetual futures are highly correlated regardless of which stablecoin is used for settlement.

Yet another concern is that Bitcoin and Ether are special because they are relatively
liquid and mature markets compared to other digital assets. We include a column showing
the measures are highly correlated with the perpetual futures funding rate for Dogecoin.
Dogecoin is the largest memecoin, a digital asset that ostensibly started as a joke, and exhibits
comparatively higher volatility than Bitcoin and Ether.

Finally, we rule out the possibility that Binance’s futures funding rates mainly reflect
idiosyncrasies specific to Binance, rather than aggregate expected returns for cryptocurrency
beyond Binance. We compare Binance’s perpetual future funding rates with analogous rates
from FTX and find that funding rates are similar and highly correlated across the exchanges,
confirming that the funding rates are not principally capturing exchange-specific factors. In
addition, we show that perpetual futures funding rates are closely linked to expected returns
embedded in crypto futures traded on the CME.

Figure 4 shows a binscatter of the perpetual future funding rate and the USDT stablecoin
lending rate: the two are strongly positively related. More formally, we test the model’s
prediction that lending rates are increasing in y, equation (A.1), by regressing Tether’s lending
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Figure 4: Stablecoin Lending Rates and Cost of Leverage. Figure plots a binscatter of daily
observations of the annualized funding rate of BTC/USDT perpetual futures on Binance relative to the
annualized USDT lending rate on FTX.

rate on FTX on the perpetual futures funding rates using

USDT Lending Ratet = α + β Futures Funding Ratet + γXt + εt,

where Xt is a vector of controls. Table 2 shows the regression results. The first row shows that
a 1pp increase in the futures funding rate is associated with an increase in stablecoin lending
rates between 0.12 and 0.26pp, depending on the control variables. A one-standard-deviation
increase in the future funding rate (30pp) corresponds to lending rates increasing by roughly
3.6pp, using the estimates in column 3. Across all specifications, there is a positive and
significant relationship between lending rates and our proxy for expected returns. We include
a measure of risk, Bitcoin’s implied volatility, as a control since the lending rates may not
be risk-free and may be higher when the underlying collateral, Bitcoin, is more volatile,
increasing the risk of counterparty default.32 Moreover, we control for the contemporaneous
Bitcoin return to account for other factors driving spot returns at the daily level.

The regression results suggest a relationship akin to the interest rate parity in international
finance, governing the relationship between interest rates and spot and future exchange rates.
This is a feature, not a bug, of our analysis and strengthens our thesis that lending rates
32In the Online Appendix, Table A.6 includes robustness tests by regressing stablecoin lending rates on
measures of expected returns inferred from CME cryptocurrency futures instead of futures funding rates.

26



USDT USDT and DAI
(1) (2) (3) (4) (5) (6)

Futures Funding Ratet 0.26∗∗∗ 0.19∗∗∗ 0.12∗∗∗ 0.23∗∗∗ 0.17∗∗∗ 0.12∗∗∗
(14.41) (8.10) (5.17) (12.96) (8.92) (7.15)

Stablecoin Lending Ratet−1 0.43∗∗∗ 0.30∗∗∗
(6.01) (7.50)

BTC Implied Volatilityt 0.01 0.03
(0.20) (1.18)

RBTC
t 0.05 0.09

(0.86) (1.49)
N 705 705 704 1,355 1,355 1,353
R2 0.61 0.71 0.77 0.45 0.59 0.64
Month FE No Yes Yes No Yes Yes
Coin FE No No No No Yes Yes

Table 2: Stablecoin Interest Rates and Expected Returns. Table presents regression Ri,t = α +
βyt + γ′X + ai + bt + εi,t where Ri,t is stablecoin i’s margin lending rate from the FTX exchange, yt is
Binance’s BTC/USDT perpetual future funding rate, and X is a vector of controls including the lag of the
stablecoin i’s lending rate, the risk of Bitcoin measured by Bitcoin futures’ implied volatility, and Bitcoin’s
contemporaneous price return, ai is a stablecoin fixed effect, and bt is a time fixed effect. Observations are
daily. t-statistics are reported in parentheses using robust standard errors and clustered by week, where ∗
p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

are driven by leveraged speculation. As mentioned in section 3.1, one way to take a levered
bet in cryptocurrencies is to go long on a perpetual future. Another way is margin lending,
whereby the speculator borrows a stablecoin to take a leveraged position in a cryptocurrency.
By arbitrage, the two alternative speculative strategies should be closely linked to each other.
We should note, however, that such arbitrage is imperfect due to frictions and because margin
loans and perpetual futures do not have matched maturities.

4.2 Peg Stability

Proposition 1 predicts that stablecoin issuers can maintain their peg following shocks to spec-
ulative demand with two tools: either adjusting their liquid asset share ` or issuing/redeeming
tokens s. We empirically verify both mechanisms.

Liquid Asset Portfolio Share Channel The model shows that stablecoin issuers can
offset negative shocks to cryptocurrency demand by increasing their portfolio share of liquid
assets, all else equal. We assumed that the issuer’s liquid asset holdings, `, are public
knowledge, at least at disclosure dates. In practice, it is rarely the case that a stablecoin
issuer gives disclosures with enough granularity to verify its liquid asset share. Disclosures are
infrequently published, and there are some doubts about their accuracy. Tether, for example,
started providing regular disclosures only after an investigation by the New York Attorney
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Figure 5: Tether Liquid Share vs. Perpetual Futures Funding Rate and USDT Lending Rate.
Left panel plots the perpetual futures funding rate against USDT’s liquid portfolio share in the same quarter.
Right panel plots the average annualized lending rate for Tether on FTX by quarter against USDT’s liquid
portfolio share in the same quarter. Liquid portfolio share is calculated using public disclosures and is the
share of reserves held in cash, bank deposits (including fiduciary deposits), reverse repurchase agreements,
and Treasury bills.

General.33

Despite these limitations, we show that there is a negative relationship between y (and R)
and ` using public disclosure data from Tether, which has released seven quarterly disclosures
with enough granularity to estimate Tether’s `. Figure 5 is a scatterplot comparing the liquid
asset share against the perpetual futures funding rate (y) and the USDT lending rates (R).
We define Tether’s liquid asset portfolio share ` as its share of reserves held in cash, bank
deposits (including fiduciary deposits), reverse repurchase agreements, and Treasury bills.
While the data are limited to seven quarterly data points, there is a clear negative relationship
that ` is higher when expected returns and Tether’s lending rate are lower. When crypto
demand or the stablecoin lending rates are low, stablecoin issuers hold more liquid assets
to maintain the stablecoin’s peg. Over time, alongside greater attention toward Tether’s
underlying reserves, Tether’s quarter-end liquid asset share increased from around 26% in
early 2021 to roughly 70% by late 2022. Tether’s liquid asset share at quarter ends has been
in the 70-76% range in 2023.

One concern is that during our sample period, 2020 to 2022, the Federal Reserve raised
33In the absence of disclosures, investors may infer that ` = 0. In that case, the stablecoin can keep its peg so
long as y is sufficiently high.
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interest rates, and Tether may have simply substituted its portfolio toward Treasuries as
their yields increased. However, the spread between 3-month AA financial commercial paper
and 3-month T-bills increased from 8bps in December 2020 to 31bps in November 2022,
mitigating this concern. As a point of comparison, we show that prime money market funds,
which are very often compared to stablecoins (Anadu et al., 2023), also did not shift toward
Treasuries during this same time period. Figure A.2 in the Online Appendix shows that
the share of prime money market funds’ portfolio held in Treasuries fell from 25 percent to
less than 10 percent; including overnight reverse repurchases with the Federal Reserve (not
available to stablecoins), the share of liquid assets remained flat. This comparison further
mitigates concerns that Tether shifted towards safer assets due to higher safe interest rates.

It is true that Tether may have also decreased its risky reserves because of pressure from
the industry and the public to become more transparent. This is consistent with our model,
which says that observable safe reserves reduce run risk. We document that the consistent
decrease of risky reserves was accompanied by a decrease in lending rates, which are an
important part of the compensation for holding the prone-to-runs stablecoin.

Redemption Channel Stablecoin issuers do not provide continuous information on their
liquid assets, and quick adjustments in their liquid asset share may be difficult and costly
when portfolio rebalancing costs are high. Proposition 1 shows that stablecoin issuers can
maintain their peg by adjusting the supply of the tokens while holding ` fixed. Information on
the token’s supply is public, and the supply often fluctuates in the short term. We calculate
a stablecoin i’s net issuance on date t as

∆si,t =
(
Market Capi,t

Pi,t
−

Market Capi,t−1

Pi,t−1

)
.

Net redemptions equal −1×∆si,t. We divide the market capitalization by the stablecoin’s
price because we are interested in the face value of the stablecoin’s liabilities, which the issuer
can directly affect. If we did not divide by prices, it would appear that the stablecoin had
issued more coins when its price increased, even if the stablecoin issuer took no action.

Table 3 shows summary statistics for redemptions for the largest stablecoins and orders
the stablecoins in descending order based on their average 2021 market capitalization. The
largest three stablecoins have net redemptions between 25 percent and 39 percent of days,
even though stablecoins have grown rapidly over the period. The average redemption for
the three ranges between 0.3 percent (USDT) and 1.4 percent (BUSD). TerraUSD (USTC)
had the largest one-day net redemption of $4.7 billion, about 27 percent of its market cap,
during its collapse in May 2022. In the post-2019 period, each stablecoin has faced large
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single-day redemptions: 4.1 percent for Tether, 8.2 percent for USDC, and 11.9 percent for
BUSD amounting to $3.4 billion, $3.8 billion, and $460 million. Figure A.3 in the Online
Appendix plots the daily redemptions and issuance of Tether—that will be the focus of our
analysis—as a percent of its face value. These flows are volatile and economically meaningful.

Days Average 95%ile Largest
Redemption Redemption After 2019

Coin Total % with $ mln % of $ mln % of $ mln % of
redemptions face face face

USDT 2,788 26 62.0 0.3 230.4 1.0 3,432.4 4.1
USDC 1,493 39 79.9 0.8 360.9 2.3 3,809.4 8.2
BUSD 1,142 34 65.5 1.4 229.4 5.4 460.4 11.9
DAI 1,083 37 34.4 1.1 145.5 4.0 718.2 13.6
USTC 765 27 99.8 0.9 323.5 3.1 4,748.3 27.1
MIM 493 38 28.8 1.5 53.0 3.0 1,473.6 78.8
TUSD 1,689 43 7.1 1.3 38.0 5.1 235.1 19.0
PAX 1,502 45 7.6 1.5 34.8 5.6 178.7 15.3
LUSD 580 42 11.9 1.9 44.4 6.3 585.0 40.4
HUSD 1,143 38 9.0 2.5 42.2 8.9 171.8 35.7
USDN 1,009 40 4.2 0.8 9.8 2.0 547.2 80.5
FRAX 685 40 10.3 1.1 43.7 4.6 594.8 22.9
ALUSD 586 50 2.2 0.8 7.1 2.8 93.7 27.3
GUSD 1,508 42 4.9 3.4 23.3 17.8 169.3 41.4
USDP 589 48 1.8 3.0 9.5 18.9 64.9 52.4
MUSD 851 54 1.2 2.4 4.8 10.2 16.0 27.7
USDK 1,227 49 0.1 0.3 0.3 0.9 1.6 6.8
RSV 941 51 0.0 0.5 0.2 1.8 3.5 16.6

Table 3: Redemption Summary Statistics. Table presents summary statistics about daily net redemp-
tions for several stablecoins. Rows ordered by average market capitalization in 2021, beginning with the
largest (USDT). Sample runs from the date Coingecko has data for the coin until November 5, 2022.

Indeed, the magnitudes of stablecoins’ redemptions are economically large compared to
the traditional banking system. Gorton and Zhang (2021) and Gorton et al. (2022) argue
that Free Banking era banks and stablecoin issuers are similar because they both created
private money—private bank notes and stablecoins—and both did so without a lender of last
resort or deposit insurance. The average liquid asset share of New York banks from 1818 to
1861 was 5.7 percent, using data from Weber (2018), defined as cash, cash items, and U.S
government bonds. Single-day redemptions on the scale of those faced by stablecoins would
have plausibly exhausted the Free Banking system’s liquid assets.

We empirically establish the redemption channel in three steps. First, we regress changes
in the token’s log face value supply at t on cryptocurrency return and riskiness at t − 1,
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which are factors that should affect the stablecoin issuance and redemptions following our
theoretical analysis in Section 2.4. This step captures how a change in speculative demand at
t− 1 affects stablecoin supply at t. Second, we regress the stablecoin lending rates t on the
predicted supply changes at t from the first step, while controlling for other contemporaneous
factors. This step captures the effect that a change in stablecoin supply induced by a change
in speculative demand has on lending rates, which is at the core of the redemption channel.
Third, we investigate how the change in lending rates helps stabilize the peg conditional on a
de-pegging episode.

Recall that the redemptions channel is operational both in normal times when the issuer
is trying to stabilize the peg and in times of stress, during which self-fulfilling runs may
unfold when the issuer is trying to defend the peg. We present results for step 1 and step 2
for the full sample, mixing these two cases, and separately for normal times by excluding
May 2022, which should include observations corresponding to the narrative run episodes on
Tether. The results are qualitatively and quantitatively similar.34

The first-step regression is

∆ ln(si,t) = α + β1yt−1 + β2σt−1 + γ′X + ai + bt + εi,t. (15)

y is the perpetual futures funding premium, σ is Bitcoin’s risk measured by its futures’
implied volatility, si,t is the face value of stablecoin i, X is a vector of controls including
lags of stablecoin’s face value and issuance as well as BTC’s trading volume, ai and bt are
stablecoin and time fixed effects. Our theoretical analysis predicts the stablecoin’s supply
will increase in y, β1 > 0, and decrease in σ, β2 < 0. We lag the independent variables by
a day to ensure they are in the stablecoin issuer’s information set. Moreover, we include
monthly fixed effects to capture possibly slower-moving changes in `, as the proposition’s
redemption channel holds ` fixed, as well as other factors driving the demand of stablecoins
on a monthly frequency.

Table 4 shows the results. The first four columns focus on USDT, and the last four include
USDT and DAI. Implied volatility has a negative coefficient, and the funding rate coefficient
is consistently positive, so stablecoin redemptions are larger when implied volatility is higher
and when funding premia, our proxy for the demand of cryptocurrency speculation, is lower.
The results are similar across all specifications including month and coin fixed effects and
including lags of redemptions and the token’s face value. ∆ ln(si,t) is in basis points, so a
10pp increase in the funding premium, all else equal, corresponds to subsequent stablecoin
34We do not present separate results for step 3 given the small sample size for this empirical test as explained
below. But we separately study the May 2022 event in Section 4.3 and show the de-pegging and re-pegging
dynamics along with Tether’s lending rates.

31



USDT USDT and DAI
(1) (2) (3) (4) (5) (6) (7) (8)

Funding Premiumt−1 0.70∗∗∗ 0.68∗∗∗ 0.63∗∗∗ 0.58∗∗∗ 1.05∗∗∗ 1.02∗∗∗ 0.92∗∗∗ 0.92∗∗∗
(4.47) (4.15) (3.90) (3.80) (5.07) (5.09) (4.60) (4.45)

Bitcoin Implied Volatilityt−1 −0.86∗∗ −0.82∗ −0.50 −1.44∗∗∗ −1.31∗∗∗ −1.36∗∗∗
(−2.01) (−1.81) (−1.29) (−3.36) (−2.93) (−2.84)

∆ ln(si,t−1) −0.02 −0.03 0.07 0.00
(−0.47) (−0.60) (0.80) (0.03)

ln(si,t−1) −110.88 −130.92∗ −83.74∗∗∗ −70.01∗∗∗
(−1.48) (−1.73) (−3.76) (−3.13)

ln(BTC Volumet−1) −3.58 11.45 −6.82 12.62
(−0.32) (1.31) (−0.54) (1.36)

∆ ln(BTC Volumet−1) 9.00 6.66 15.57 9.96
(1.15) (0.82) (1.31) (0.94)

N 704 704 704 673 1,408 1,408 1,408 1,346
R2 0.34 0.35 0.35 0.36 0.17 0.18 0.19 0.18
Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Coin FE n/a n/a n/a n/a No Yes Yes Yes
Sample Full Full Full Excl. 5/22 Full Full Full Excl. 5/22

Table 4: Peg Stability Priors. Table presents regression ∆ ln(si,t) = α+β1yt−1+β2σt−1+γ′X+ai+bt+εi,t
where y is the perpetual futures funding premium, σ is the risk of Bitcoin measured by Bitcoin futures’ implied
volatility, si,t is the face value of stablecoin i, X is a vector of controls including lags of the stablecoin’s face
value and issuance, the log level of BTC trading volume ln(BTC Volumet−1), and changes in the log level of
BTC trading ∆ ln(BTC Volumet−1). ai is a stablecoin fixed effect, and bt is a time fixed effect. ∆ ln(si,t) is
in basis points. Observation at the daily level by coin. Sample in first four columns is only USDT and in last
four columns is both USDT and DAI. Columns 4 and 8 exclude the month of Terra’s collapse, May 2022.
t-statistics are reported in parentheses using robust standard errors and clustered by week, where ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

issuance between 6 and 11 basis points. One might be concerned that our results accrue from
alternative uses of stablecoin in crypto trading that are correlated with the expected BTC
return and volatility but not fully captured by the month fixed effects we have included. In
specification (3) we include the trading volume of BTC, and its change, as controls to account
for auxiliary stablecoin demand, on a daily level, accruing from the use of stablecoins as a
vehicle facilitating storing funds between trades. Although the month fixed effects we include
may already absorb much of the variation from alternative stablecoin uses, controlling for
BTC daily trading volume should capture residual variation. Columns (4) and (8) study the
dynamics in normal times by excluding the period around TerraUSD’s collapse, May 2022,
and find similar results.

Moving to step two, the model predicts that lending rates will increase after the token’s
supply falls. Thus, we regress stablecoin lending rates on predicted changes in the token’s
supply ̂∆ ln(si,t), which we estimate using Equation 15:

∆Ri,t = α + γ
(

̂∆ ln(si,t)
)

+ ai + bt + εi,t,

and our hypothesis is that γ < 0. We estimate predicted changes in the token’s supply using
∆ ln(si,t) = α+β1yt−1 +β2σt−1 +γ′X +ai + bt + εi,t, where X is a vector of controls including
si,t−1, ∆ ln(si,t−1), the log level of BTC trading volume ln(BTC Volumet−1), and changes in

32



USDT USDT and DAI
(1) (2) (3) (4) (5) (6) (7) (8)

̂∆ ln(si,t) −3.83∗∗ −13.14∗∗∗ −11.54∗∗∗ −14.23∗∗∗ −2.01∗∗ −9.53∗∗∗ −4.48∗∗ −6.31∗∗∗
(−2.53) (−3.03) (−3.28) (−5.09) (−2.18) (−2.98) (−2.26) (−3.04)

Funding Premiumt 8.96∗∗∗ 8.29∗∗∗ 9.71∗∗∗ 10.35∗∗∗ 6.30∗∗ 7.68∗∗∗
(3.09) (3.16) (4.05) (2.77) (2.25) (2.61)

Bitcoin Implied Volatilityt −8.00 −6.84 −7.08 −10.97∗ −3.85 −4.83
(−1.41) (−1.41) (−1.40) (−1.90) (−1.10) (−1.22)

N 704 704 704 673 1,353 1,353 1,353 1,291
Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Coin FE n/a n/a n/a n/a Yes Yes Yes Yes
Controls No No Yes Yes No No Yes Yes
Sample Full Full Full Excl. 5/22 Full Full Full Excl. 5/22

Table 5: Peg Stability. Table presents regression ∆Ri,t = α + γ( ̂∆ ln(si,t)) + ai + bt + εi,t where
Ri,t is the lending rate of stablecoin i on date t at FTX in basis points and ̂∆ ln(si,t) is the expected
change in the face value of the stablecoin in basis points. ̂∆ ln(si,t) is estimated using the regression
∆ ln(si,t) = α+ β1yt−1 + β2σt−1 + γ′X + ai + bt + εi,t, where y is the perpetual futures funding premium, σ
is Bitcoin futures’ implied volatility, si,t is the face value of stablecoin i, ai is a stablecoin fixed effect, bt is a
time fixed effect, and X is a vector of controls including si,t−1, ∆ ln(si,t−1), the log level of BTC trading
volume ln(BTC Volumet−1), and changes in the log level of BTC trading ∆ ln(BTC Volumet−1). Columns
with “Controls” as no exclude the X variables, and columns with “Controls” as yes include the X variables.
Observation at the daily level by coin. Sample in first four columns is only USDT and in last four columns is
both USDT and DAI. Columns 4 and 8 exclude the month of Terra’s collapse, May 2022. t-statistics are
reported in parentheses using robust standard errors and clustered by week, where ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

the log level of BTC trading ∆ ln(BTC Volumet−1).
Table 5 shows the results. The first four columns limit the sample to USDT, and the last

four include USDT and DAI. The specifications also vary which estimates include the X
vector of controls when predicting ∆ ln(si,t), as shown in the “Controls” row. Columns (2),
(3), (4), (6), (7), and (8) also include controls for contemporaneous changes in yt and σt, as
BTC contemporaneous expected return and volatile should directly matter for the stablecoin
lending rate over and beyond the change in the stablecoin supply. Indeed, controlling for
these increases the magnitude of the effect of a change in stablecoin supply on the stablecoin
lending rate. The table shows that an expected one basis point increase in token supply
decreases the lending rate by 2 to 13 basis points. Again, columns (4) and (8) study the
dynamics in normal times by excluding the period around TerraUSD’s collapse and find
similar coefficients.

Finally, turning to step three, Table 6 shows the effect of increasing interest rates on
the stablecoin’s price during Tether’s depeg episodes. We use intraday price data from
Cryptocompare to identify depeg days as those with a minimum hourly intraday price below
the 1st percentile or a maximum hourly intraday price above the 99th percentile. When the
price depegs from $1, either above or below, there is a positive relationship between changes
in lending rates and prices, consistent with increasing lending rates pushing prices back up
after a depeg below $1 or falling lending rates pushing prices back down after a depeg above
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(1) (2) (3) (4) (5) (6)
∆Rt 1.69∗∗ 1.52∗∗ 2.70∗∗∗ 2.25∗∗∗ 2.00∗∗ 2.57∗∗∗

(2.31) (2.19) (2.95) (3.89) (2.93) (5.64)
Bitcoin Implied Volatilityt 59.30∗∗ 9.48

(2.33) (0.52)
Funding Premiumt 3.82 20.02∗∗

(0.44) (2.81)
N 22 22 22 18 18 18
R2 0.21 0.26 0.59 0.38 0.43 0.66
Coin FE No Yes Yes No Yes Yes
Cond. Repeg No No No Yes Yes Yes

Table 6: Repegging Mechanism. Table presents regression ∆Pt = α + β∆Rt + εi,t where ∆Pt is the
change in the price of Tether and ∆Rt is the change in lending rate. Observations are daily with monthly
time fixed effects. Sample includes periods of depegs where the previous day’s minimum intraday price is
less than the 1st percentile or the maximum intraday price is above the 99th percentile. Intraday price data
is hourly data from Cryptocompare. Columns (4) through (6) restrict the sample to observations where
we observe a repeg—defined as price, rounded to the nearest penny, equals $1.00. ∆Pt is multiplied by 1
million for reading convenience, and Rt is in basis points. t-statistics are reported in parentheses using robust
standard errors where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

$1. There are challenges to this empirical approach: depeg events are infrequent based on
our definition, which is not overly restrictive, and so the sample size is limited. Moreover, we
do not have minute-by-minute lending rates, so our empirics are limited to daily observations
of depeg events. Finally, factors other than a lower supply due to redemptions may drive the
increase in lending rates during depeg events, which we elaborate upon in the next section.

4.3 May 2022 Stablecoin Turmoil

In May 2022, the algorithmic stablecoin TerraUSD depegged. Sentiment in crypto markets
had been slagging but turned bearish after the depeg. Several prominent crypto firms failed
shortly after that: 3 Arrows Capital, Voyager Digital, and Celsius, and the crypto space
entered a so-called “crypto winter.” Pressure on TerraUSD spilled to other stablecoins, and
Tether’s market capitalization fell from $83 to $73 billion in May following a stream of
redemptions. Several other algorithmic stablecoins failed or teetered on the brink of viability.
USDC, viewed as the highest quality stablecoin, traded at a premium to its peg and saw net
inflows. Such turmoil is a natural experiment to study the model’s predictions with respect
to defending the peg in times of stress when self-fulfilling runs may be at play.

Figure 6 shows the market dynamics for Tether during TerraUSD’s price collapse. The
vertical line on May 10 denotes the date that TerraUSD lost its peg. The model posits that a
stablecoin will lose its peg when speculative cryptocurrency risk increases or when demand
for the speculative cryptocurrency falls. The top half of the figure shows that Tether lost its
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Figure 6: Tether during May 2022. Top-left figure plots BTC implied volatility and perpetual futures
funding rate. Top right plots the price of Tether. Bottom left panel plots Tether’s market capitalization in
billions. Bottom right panel plots Tether’s margin lending rates on two exchanges.

peg for at least two days, coinciding with spikes in BTC implied volatility and a decline in
perpetual futures funding premia, a proxy for speculative demand.35

The model predicts that Tether could potentially maintain its peg by decreasing the supply
of tokens (s), equivalent to redeeming and burning tokens to reduce its market capitalization
while holding its reserve mix (`) fixed. Tether redeemed roughly $10 billion of tokens over
three weeks, consistent with the prediction, as shown in the bottom-left panel of Figure 6.
The bottom-right panel shows that Tether’s lending rates spiked and remained elevated,
helping stabilize the peg. We should note that the increase in the lending rate alone may
not have been enough to stop the run on Tether, which could have resulted in a complete
depletion of reserves following more severe shocks. We elaborated on these limitations to
stabilization in section 2.4.

An additional consideration is that the higher lending rates were driven by an incentive
for borrowers to bet on the collapse of Tether: their debt would be stablecoin-denominated
and, thus, worth zero if Tether collapsed. In the Online Appendix in section A.4, we extend
our model to encompass this motive and show that it can result in even higher lending rates
as investors would require higher compensation. The rapid increase in lending rates before
35The perpetual future funding rate declined slightly in May 2022, but demand does not disappear as the
lender rationally expects repayment in some states; the large dip in Figure 3 reflects the Ethereum Merge
in September 2022.
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an actual de-peg resembles the “peso problem” in the literature studying the collapse of
fixed-exchange-rate regimes (Flood and Garber, 1984, and Penati and Pennacchi, 1989). In
particular, the expectation of a de-peg can result in an increase in domestic credit and in
interest rates denominated in domestic currency, even prior to a collapse of a fixed exchange
regime, which is akin to the mechanism we describe. However, we also show that supporting
such an equilibrium requires that there are some states of the world where the stablecoin does
not collapse and where speculative demand is strong enough to support the higher lending
rates; this is consistent with our key mechanism.

Proposition 1 also shows that the stablecoin issuer could also maintain its peg by increasing
`. It is unlikely this was a primary tool used to stabilize the peg in the immediate aftermath
of the TerraUSD failure, although we cannot observe ` during this period. Tether’s disclosure
for the quarter ending March 2022 showed liquid asset holdings of $43 billion (52 percent of
its total assets), defined as the sum of its cash, reverse repos, and Treasury bills. Its liquid
asset holdings would have fallen to $33 billion (46 percent of total assets), assuming it paid
for redemptions entirely out of liquid asset sales. To increase `, Tether would have needed to
sell $4.4 billion of its illiquid assets and replace them with liquid assets. Such a large shift
out of illiquid assets over a short period seems unlikely without material losses, so arguably,
the main adjustment channel was through s during this episode.

The ` adjustment mechanism to maintain the peg is likely more useful over longer periods.
In June 2022, rumors circulated that Tether’s commercial paper portfolio had suffered 30
percent losses. In response, Tether explicitly said that would increase ` in the long run:36

“Tether can report that its current portfolio of commercial paper has since been
further reduced to 11 billion (from 20 billion at the end of Q1 2022), and will be
8.4 billion by the end of June 2022. This will gradually decrease to zero without
any incurrences of losses. All commercial papers are expiring and will be rolled
into US Treasuries with a short maturity.”

Such dynamics are not limited to Tether. Dai, a decentralized and collateralized stablecoin,
uses the USDC stablecoin as collateral for more than half its outstanding coins. In the summer
of 2022, USDC’s issuer—Circle—began blocking wallets holding USDC that were associated
with Tornado Cash.37 Market participants grew concerned that DAI would be compelled to
comply with the sanctions given their large USDC holdings. Rune Christianson, DAI’s co-
founder, suggested that DAI should move its USDC holdings to ETH, functionally increasing
36https://web.archive.org/web/20220721170350/https://tether.to/en/tether-condemns-false-

rumours-about-its-commercial-paper-holdings/
37Tornado Cash is a virtual currency mixer designed to obfuscate transaction details on the Ethereum
blockchain. The U.S. Treasury sanctioned it in August 2022 for its role in money laundering.
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the risk of its reserves (decreasing `). In response, users redeemed roughly four percent of
DAI’s outstanding tokens the next day, amounting to $320 million.

4.4 Robustness

Our theoretical analysis suggests a causal relationship between expected returns (y) and
stablecoin lending rates (R). We show the two are highly correlated in Table 2. Yet, some
other unobserved variables may be driving the behavior in both variables, resulting in a high
correlation. We address this concern with an instrumental variables approach using Major
League Baseball (MLB) data.

In June 2021, MLB and FTX announced a five-year sponsorship deal naming FTX the
“Official Cryptocurrency Exchange” of the MLB. The deal placed a prominent FTX logo on
all umpire uniforms beginning July 13, 2021—previously, umpires had never worn advertising
patches. Umpires wore the patch for all regular season, postseason, and spring training
games. The sponsorship agreement included promotions on nationally televised MLB games,
MLB.com, MLB Network (a television channel), and social media.38 The deal was worth
$150 million, making it likely FTX’s largest endorsement deal in terms of annual expense.39

We collect television viewership data on nationally televised MLB games from show-
buzzdaily.com.40 The data include a household rating, which measures the percentage of
households watching the game. The television viewership data run from July 13, 2021, to
November 5, 2022, corresponding to when umpires started wearing the logo (beginning during
the 2021 All-Star game) through the end of the 2022 World Series. On many days there is
only one game with a household rating. We use daily averages of the household rating as
our instrument for the funding premium. Notably, the sample does not include the period of
FTX’s collapse, which began on November 6, 2022.

Our identification relies on two assumptions: First, we assume that the advertising is
effective, and some MLB audience members began trading cryptocurrency after viewing the
advertising. FTX’s agreement to the costly sponsorship deals indicates that they believed
it would lead to more customers and more trading on their platform. There is considerable
evidence that advertising is effective (Guadagni and Little 1983, Ippolito and Mathios 1991,
Ackerberg 2003, Sethuraman et al. 2011). Bagwell (2007)’s survey of the literature on
advertising’s effect on consumer behavior indicates that advertising is most effective for those
without previous experience with the brand. Moreover, survey evidence shows that new retail
38https://www.mlb.com/press-release/press-release-mlb-ftx-cryptocurrency-partnership
39See https://apnews.com/article/sam-bankmanfried-ftx-crypto-bitcoin-

ab5910fe6f9c56b73dc2943848c33817.
40The data also includes about half a dozen nationally televised baseball events, like the home run derby,
all-star game, trade deadline, and draft.
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crypto traders entered the market during rapid crypto price increases.41 Second, the timing
of the baseball schedule is set well in advance of the season, and it is highly improbable
cryptocurrency events affect the timing or viewership of MLB games.42

One concern is that the advertising might bring new customers to open accounts and begin
lending stablecoins rather than speculating in other digital assets, thereby increasing the
demand for stablecoins. To control for this, we include the change in the market capitalization
of the stablecoin on that day to control for potential changes in the demand for the stablecoin.
Moreover, were new customers to open accounts to lend stablecoins, we would expect lending
rates to fall as the supply of lendable coins grew, leading to a negative relationship between
the TV rating and lending rates, which would go against the result we try to establish.
However, we still find a positive relationship between the two despite this potential downward
bias.

Table 7 shows the IV regression results. In the first stage, we regress the daily funding
premium on the average household rating; in the second stage, we regress the lending rate
on the predicted funding premium. Panel A shows the second stage result. For every 1pp
increase in the futures funding premium estimated using the household rating instrument,
Tether’s margin lending rate is about 18bp higher on an annualized basis (column 2). Using
DAI’s lending rate or different controls gives similar estimates ranging from 16bps to 22bps.

Panel B reports the first stage regression. The instrument satisfies the relevance condition,
and the F -statistic indicates the instrument is largely statistically strong. Panel C shows
that the instrumented regression gives similar coefficients to the OLS regression.

We provide additional robustness tests in the Online Appendix. Table A.7 shows several
placebo tests. We use future household ratings as the instrument, with the columns varying
by using ratings from one day, one week, or four weeks in the future. Baseball viewership
in the future should not affect today’s lending rate through the funding premium, because
it is unknown at date t. Using the future household rating as the instrument leads to an
insignificant relationship between the funding premium and the lending rate for nearly all
specifications. The F -statistic indicates the instruments are weak.

One concern is that the FTX lending and the Binance perpetual futures markets may be
meaningfully segmented from one another. We use the Binance futures funding rate because
it is likely the most liquid perpetual future instrument settled in USDT. Although Binance
ostensibly prohibited U.S.-based traders from using its platform, the Securities and Exchange
41See https://www.jpmorganchase.com/institute/research/financial-markets/dynamics-

demographics-us-household-crypto-asset-cryptocurrency-use.
42The 2022 season schedule was modified shortly before the season began due to protracted negotiations with
the players’ union.
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Commission has documented that Binance still allowed U.S. clients to access its platform.43

We check for additional robustness by including a proxy for the attention an individual
game demands above and beyond its household rating.44 We proxy for attention using the
Championship Leverage Index (cLI), a standard measure used by baseball analysts to estimate
the effect of an individual game’s outcomes on that team’s odds of winning the World Series
championship.45 Teams closer to earning a playoff berth and games later in the playoffs
generally have higher cLI measures. The cLI is standardized, so the average game has a cLI
of 1. We use data from Baseball-Reference.com for regular season cLI values, and we estimate
the cLI for playoff games, and our sample includes nationally televised games. We exclude
observations in a few cases when the viewership data does not provide specific team names.

In Table A.8, we estimate the IV but now use the product of the household rating and
the cLI, where a date’s rating and cLI is the average of the nationally-televised games on that
day. Our identifying assumption is that the audience pays attention to more important games
more closely. As expected, there is a positive relationship between the household rating and
the cLI, so more important games have higher viewership. Yet there remains some variation
in cLI that is not entirely explained by the household rating, especially during the regular
season when games have lower viewership. For two games with identical household ratings,
our instrument will expect a larger effect from the more important game as measured by
the cLI. The new instrument will exactly equal the previous household instrument for the
average game because the average cLI is 1. The second-stage results shown in Table A.8 are
similar to those without the cLI but are somewhat stronger across each specification.

Finally, we show that speculators have good reason to speculate in response to MLB
advertising. In the Online Appendix Table A.9, we show that the returns for BTC, ETH,
and DOGE are indeed positively related to household ratings of MLB games, consistent
with our intuition that speculators may grow bullish as FTX advertises to new customers.
The table regresses the daily return of BTC, ETH, or DOGE on the household rating of
nationally televised MLB games on the same day. The table includes day-of-week fixed effects.
While the standard errors are large, the average return increases in household rating. DOGE
43For example, U.S. traders could use Virtual Private Networks (VPNs) to access the platform. See

https://www.sec.gov/files/litigation/complaints/2023/comp-pr2023-101.pdf.
44A large behavioral literature discusses the role of attention in traditional finance returns. Barber and Odean
(2008) show that retail investors buy stocks that capture their attention. Papers such as Engelberg et al.
(2012), Engelberg and Parsons (2011), and Da et al. (2011) use TV, media, or internet data to measure
investor attention.

45Specifically, Baseball Reference estimates the cLI as follows: “For each team game, we run 25,000 coin-toss
simulations of the remainder of the season twice. In the first simulation, we assume the team won the
game in question. In the second simulation, we assume the team lost the game in question. The difference
between the team’s World Series win probabilities after a win and a loss measures the importance this
game has on the team’s World Series win probability.”
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coin has a positive and statistically significant relationship, perhaps because it is even more
subject to animal spirits than Bitcoin and Ether.
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Panel A: Second Stage Lending Rate Ri,t
USDT DAI

(1) (2) (3) (4)

̂Futures Funding Ratet 0.279∗∗∗ 0.175∗∗∗ 0.223∗∗∗ 0.155∗∗∗
(4.310) (3.069) (2.890) (3.159)

Bitcoin Implied Volatilityt 0.055 0.035 −0.020 −0.026
(0.721) (0.540) (−0.463) (−0.879)

∆ ln(si,t) −0.006 −0.004 −0.008∗∗ −0.006∗∗
(−1.167) (−0.955) (−2.347) (−2.264)

Rt−1 0.481∗∗∗ 0.492∗∗∗
(2.969) (6.576)

N 258 258 258 258
Time FE Yes Yes Yes Yes

Panel B: First Stage Funding Premium
USDT DAI

(1) (2) (3) (4)

Ratingt 2.587∗∗∗ 1.941∗∗∗ 2.407∗∗∗ 2.307∗∗∗
(3.437) (2.830) (3.191) (3.359)

Bitcoin Implied Volatilityt 0.344∗ 0.210 0.331∗∗ 0.314∗∗
(1.730) (1.058) (2.303) (2.219)

∆ ln(si,t) 0.024∗ 0.024∗ 0.028∗∗∗ 0.028∗∗∗
(1.748) (1.750) (5.159) (5.154)

Rt−1 1.145∗∗ 0.299
(2.570) (0.935)

N 258 258 258 258
Time FE Yes Yes Yes Yes
F -stat 11.82 8.01 10.18 11.28

Panel C: OLS Lending Rate Ri,t
USDT DAI

(1) (2) (3) (4)

Futures Funding Ratet 0.211∗∗∗ 0.119∗∗∗ 0.153∗∗∗ 0.109∗∗∗
(14.232) (5.647) (7.492) (4.938)

Bitcoin Implied Volatilityt 0.013 0.007 0.067 0.024
(0.281) (0.227) (1.180) (0.528)

∆ ln(si,t) 0.003 −0.001 0.004 0.002
(0.264) (−0.061) (0.928) (0.599)

Rt−1 0.489∗∗∗ 0.297∗∗∗
(6.906) (5.027)

N 705 704 650 649
Time FE Yes Yes Yes Yes

Table 7: Instrumental Variables Regression of Futures Funding Premia and Lending Rates.
Instrumental variables regression using the mean household rating of MLB games on a given day as an
instrument to predict the perpetual futures funding premium. Panel A shows the second stage regression
of the instrumented variable on margin lending rates separately for USDT and DAI. Panel B shows the
first stage regression of the instrument on the perpetual futures funding premium. Panel C shows the OLS
regression of the lending rate on the funding premium. Time FE indicates day of week, month of year, and
year fixed effects. Kleibergen-Paap rk Wald F statistics reported. t-statistics are reported in parentheses
using robust standard errors and clustered by week where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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5 Conclusion

Historically, private money has often proved fragile, trading at a discount (Gorton, 2017).
Stablecoins are a new form of private money that are susceptible to runs but have largely
managed to maintain their peg. Stablecoins can offer compensation to their owners in several
ways, including facilitating crypto trading, insuring against currency devaluation in countries
with volatile currencies, or enabling illicit activities. Our analysis focuses on their novel role
in crypto speculation, where stablecoin holders earn compensation by lending to traders
taking levered speculative positions in other cryptocurrencies. Stablecoin lending rates are
high and tightly correlated with measures of speculative demand. Fluctuations in crypto
speculative motives put upward or downward pressures on stablecoin prices in secondary
markets. Stablecoin issuers can maintain the peg by adjusting the total supply of stablecoin
tokens outstanding or altering the liquidity of their reserves. But stablecoins can collapse
quickly despite maintaining their peg most of the time.

Our analysis has placed the fragility of stablecoins at the forefront due to the structural
vulnerabilities of their business model. However, we also further emphasize how stablecoins
can sustain positive run-risk in equilibrium because this has been an empirically relevant
feature of stablecoins during the period of the speculative crypto-trading that we investigate.
This does not need to be the case in general, as stablecoin issuers can choose a run-proof
structure, also established as a special case in our model. Indeed, issuers have invested
in safer assets since the second half of 2022, which can be partially due to the ability to
extract seigniorage from higher Treasury rates. However, the role of stablecoins in facilitating
leverage for crypto speculation remains true. One example is the surge in demand for PYUSD
(PayPal’s stablecoin), which invests in high-quality assets, coinciding with a promotion by
Kamino Finance, a lending service on Solana (see Figure A.4 in the Online Appendix). Hence,
much of our analysis—and especially our empirical work on identifying speculative crypto
demand and linking it to stablecoin lending rates and stablecoin supply—continues to be
informative even under zero run risk and can be useful for future research.

The mechanism we describe and test is not limited to stablecoins and the crypto-world.
We expect the results to hold in other cases where privately-produced money helps satisfy
leverage demand. Bankers’ acceptances in the 1920s and, more recently, tokenized money
market fund shares—used to meet variation margin in derivatives and repo transactions—are
two examples. Our framework and analysis could also be extended to these cases to provide
valuable insights.
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A Online Appendix

Section A.1 includes additional derivations for statements made in Section 2 of the manuscript.
Sections A.2-A.6 extend the baseline model in several dimensions mentioned in the manuscript:
Section A.2 endogenizes margin requirements in stablecoin margin loans, Section A.3 incorpo-
rates benefits from additional uses of stablecoins other than their use in leveraged speculative
crypto-trading, and Section A.4 incorporates the motive to borrow stablecoins to speculate
on their collapse. Section A.5 derives the equilibrium token supply and stablecoin liquidity
under non-observability. Section A.6 presents the choice of ` by the issuer when the liquid
asset pays a positive interest. Section A.7 checks the robustness of using the BTC/USDT
perpetual futures funding rate as a measure of speculative demand considering alternative
proxies. Sections A.8 and A.9 report additional figures and tables with auxiliary results
mentioned in the manuscript.

A.1 Additional Derivations

A.1.1 Derivatives of lending rate R with respect to y, m, s, λ

The effect of an increase in the cryptocurrency expected return, y, on the lending rate R, is

dR(λ, s)
dy

= 1
1−m > 0. (A.1)

Because F ′(e) > y, an increase in the margin, m, yields

dR(λ, s)
dm

= y

(1−m)2−
F ′
(
e− m

1−m(1− λ)s
)

(1−m)2 +
m(1− λ)sF ′′(e− m

1−m(1− λ)s)
(1−m)3 < 0. (A.2)

An increase in the number of tokens, s, yields

dR(λ, s)
ds

=
m2(1− λ)F ′′(e− m

1−m(1− λ)s)
(1−m)2 < 0, (A.3)

1The views expressed in this paper are those of the authors and do not necessarily represent those of Federal
Reserve Board of Governors, or anyone in the Federal Reserve System.
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while an increase in redemptions, λ, yields

dR(λ, s)
dλ

= −
m2sF ′′(e− m

1−m(1− λ)s)
(1−m)2 > 0. (A.4)

A.1.2 Details steps for derivation of unique θ∗ in global game

Given the private signal, an individual patient investor will update their posterior about θ,
which will be uniform in [xi − ε, xi + ε] and compute the expected payoff differential

∆(xi) =
∫ xi+ε

xi−ε
ν(θ, λ)dθ2ε . (A.5)

If xi ≥ θ + ε, the individual patient investor can conclude that θ ≥ θ and will not redeem,
independent of their belief about λ (∆(xi) > 0). Similarly, if xi < θ − ε, the individual
patient investor can conclude that θ < θ and will redeem, independent of their belief about λ
(∆(xi) < 0). These are the upper and lower dominance regions for θ, where the individual
action is independent of the beliefs about the actions of others.

For intermediate xi ∈ [θ−ε, θ+ε), the sign of ∆(xi) depends on the beliefs about λ. To pin
down these beliefs, we focus on a threshold strategy that all patient investors follow. We show
that there exists a unique signal threshold x∗, such that every investor redeems if their private
signal xi < x∗ and does not redeem if xi > x∗. Given this threshold, an individual investor can
form well-defined beliefs about the total number of redemptions by patient investors, denoted
by λb(θ, x∗)s, and given by the probability that other investors receive a private signal below
x∗. If θ > x∗ + ε, all patient investors get signals xi > x∗, none redeem, and λb(θ, x∗) = δ.
If θ < x∗ − ε, all patient investors get signals xi < x∗, all redeem, and λb(θ, x∗) = 1. If
x∗−ε ≤ θ ≤ x∗+ε, some patient investors get signals xi > x∗, while others get signals xi < x∗;
thus, under the threshold strategy, λb(θ, x∗) = (1−δ)Pr(xi < x∗) = δ+(1−δ)(x∗−θ+ε)/(2ε).
The following equation summarizes these beliefs:

λb(θ, x∗) =


1 if θ < x∗ − ε

δ + (1− δ)(x∗ − θ + ε)/(2ε) if x∗ − ε ≤ θ ≤ x∗ + ε

δ if θ > x∗ + ε

. (A.6)

Using (A.6), an investor can compute the expected payoff differential using their posterior
about θ, given the signal xi and an assumed value for x∗:

∆(xi, x∗) =
∫ xi+ε

xi−ε
ν(θ, λb(θ, x∗))dθ2ε . (A.7)
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Unlike in (A.5), beliefs in (A.7) are uniquely determined and pin down the payoff differential.
Under a threshold strategy, a patient investor does not redeem (∆(xi, x∗) > 0) if xi > x∗

and redeems (∆(xi, x∗) < 0) if xi < x∗. By continuity, the investor that receives the threshold
signal x∗ is indifferent between not redeeming and redeeming, i.e.,

∆(x∗, x∗) =
∫ x∗+ε

x∗−ε
ν(θ, λb(θ, x∗))dθ2ε = 0. (A.8)

A threshold strategy also implies thresholds for fundamentals θλ̂ and θλ̄ such that the
issuer is solvent at t = 2 for θ ≥ θλ̂ and has enough liquidity at t = 1 for θ ≥ θλ̄ given signal
threshold x∗ and redemptions λb(θ, x∗). These thresholds are determined by λ̂ = λb(θλ̂, x∗)
and λ = λb(θλ̄, x∗). Using these, the threshold (A.8) can be expanded to

∆(x∗, x∗) =−
∫ θλ̄

x∗−ε

`+ (1− `)ξ
λb(θ, x∗)

dθ

2ε +
∫ θλ̂

θλ̄

θX(1− `)
[
1− λb(θ,x∗)−`

ξ(1−`)

]
1− λb(θ, x∗) − 1

 dθ2ε
+
∫ x∗+ε

θλ̂

[
θR(λb(θ, x∗), s) + (1− θ) max

(
`− λb(θ, x∗)
1− λb(θ, x∗) , 0

)
− 1

]
dθ

2ε = 0.

(A.9)

As is typical in the global game literature, we focus on the limiting case where noise
ε→ 0, which also implies that θλ̂, θλ̄ → x∗. We will denote by θ∗ this common threshold that
the fundamentals’ thresholds, θλ̂, θλ̄, and signal threshold, x∗, converge to. Expressing (A.9)
in terms of θ∗ and changing variables from θ to λ, such that as θ decreases from x∗ + ε to
x∗ − ε, λ uniformly increases from 0 to 1− δ, we get

∆̄∗ =
∫ λ̂

δ

[
θ∗R(λ, s) + (1− θ∗) max

(
`− λ
1− λ, 0

)
− 1

]
dλ

1− δ

+
∫ λ

λ̂

θ∗X(1− `)
[
1− λ−`

ξ(1−`)

]
1− λ − 1

 dλ

1− δ −
∫ 1

λ

`+ (1− `)ξ
λ

dλ

1− δ = 0. (A.10)

Existence and Uniqueness of Threshold Equilibrium. ∆̄∗ is continuous in θ∗ because
all integrands are continuous and the discontinuity in v occurs only at one discrete point, λ̂.
Then, from the existence of the upper and dominance regions, there exists a θ∗ such that
∆̄∗ = 0. It is, then, easy to show that the expected payoff differential is positive (negative) for
an investor who receives signal xi > θ∗ (xi < θ∗), and hence the threshold strategy θ∗ is indeed
an equilibrium. Intuitively, observing a higher signal shifts probability from negative values
of v to positive values of v as beliefs about aggregate withdrawals improve using (A.6); recall
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that noise is uniformly distributed. Given that v changes sign—"crosses zero"—only once,
it follows that the posterior average of v is higher (lower) for xi > θ∗ (xi < θ∗) and, hence,
positive (negative); we refer the reader to Goldstein and Pauzner, 2005, and Kashyap et al.
2024 for the technical details and precise exposition.2 Finally, observe that d∆̄∗/dθ∗ > 0, so
θ∗ and, hence, the threshold equilibrium strategy are unique.

A.1.3 Derivatives of θ∗ with respect to y, m, s, `

Total differentiating (A.10) yields the following derivatives:

dθ∗

dx
= −d∆̄∗

dx

[
d∆̄∗
dθ∗

]−1

for x ∈ {y,m, s, `}

Note d∆̄∗/dx =
∫ λ̂
δ θ
∗dR(λ, s)/dxdλ > 0 for x ∈ {y,m, s}, thus they affect ξ∗ only through R.

Using (A.1)–(A.3) and d∆̄∗/dθ∗ > 0, we have

dθ∗

dy
< 0 & dθ∗

dm
> 0 & dθ∗

ds
> 0. (A.11)

Finally,

d∆̄∗
d`

= dλ̂

d`

[
θ∗R(λ̂, s)− 1

] 1
1− δ +

∫ `

δ
(1− θ∗) 1

1− λ
dλ

1− δ

− dλ̂

d`

θ∗X(1− `)
[
1− λ̂−`

ξ(1−`)

]
1− λ̂

− 1
 1

1− δ +
∫ λ

λ̂

X(1/ξ − 1)
1− λ

dλ

1− δ −
∫ 1

λ

1− ξ
λ

dλ

1− δ .

(A.12)

Given that dλ̂/d` > 0 from (7), all the terms in the above condition are positive apart
from the last one, which means that the effect of ` on θ∗ may be ambiguous. This is a typical
property in bank-run models, and it is intuitive: It suggests that in the region of beliefs about
redemptions that a run materializes, higher liquidity increases the payoff from redeeming
because individuals can successfully redeem their tokens with higher probability. We derive
below a (weak) sufficient—not necessary—condition for d∆̄∗/d` > 0, which requires that the
expected lending rate is below a threshold, supported by the data.
2Note that for the existence of a threshold equilibrium the strongest property of one-sided strategic comple-
mentarities is not needed and single-crossing of v suffices as Goldstein and Paunzer (2005) also point out.
Given our focus on threshold equilibria, we do not make further assumptions.
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Under the sufficient condition, we unambiguously obtain

∂θ∗

∂`
< 0. (A.13)

Note that (A.13) can still hold in alternative parameterizations violating the sufficient
condition but may also not hold. In the latter cases, the issuer would set ` = 0, which is
inconsistent with observed stablecoin reserve portfolios (see Section 2.4 for issuer optimization
problem).

Sufficient condition for d∆̄∗/d` > 0. Substituting (9) in (A.12) we get that

d∆̄∗
d`

= dλ̂

d`

[
θ∗R(λ̂, s)− 1

] 1
1− δ +

∫ `

δ
(1− θ∗) 1

1− λ
dλ

1− δ

− 1
`

∫ λ̂

δ

[
θ∗R(λ, s) + (1− θ∗) max

(
`− λ
1− λ, 0

)
− 1

]
dλ

1− δ

− dλ̂

d`

θ∗X(1− `)
[
1− λ̂−`

ξ(1−`)

]
1− λ̂

− 1
 1

1− δ −
1
`

∫ λ

λ̂

θ∗X(1− `)
[
1− λ−`

ξ(1−`)

]
1− λ − 1

 dλ

1− δ

+
∫ λ

λ̂

X(1/ξ − 1)
1− λ

dλ

1− δ + 1
`

∫ 1

λ

ξ

λ

dλ

1− δ . (A.14)

Given that dλ̂/d` > 0 from (7), the terms in the last two lines in (A.14) are all positive
and, thus, we only need to sign the terms in the first two lines. Add and subtract dλ̂/d` ·
(1 − θ∗) · (`− δ)/(1− δ)2. Then, because (i) dR(λ, s)/dλ > 0 from (3), (ii) d(`− λ)/(1− λ)/d` =
−(1− `)/(1− λ)2 < 0, and (iii) d(1− λ)−1/dλ > 0, the sum of the terms in the first two line is
strictly higher thandλ̂

d`
− λ̂− δ

`

 [θ∗R(λ̂, s) + (1− θ∗) max
(
`− δ
1− δ , 0

)
− 1

]
1

1− δ

+(1− θ∗) `− δ
(1− δ)2

1− dλ̂

d`

 . (A.15)

The last term is strictly positive because dλ̂/d` = X(1− ξ)/(X − ξ) < 1. Moreover,

θ∗R(λ̂, s) + (1− θ∗) max
(
`− δ
1− δ , 0

)
− 1 > θR(δ, s) + (1− θ) max

(
`− δ
1− δ , 0

)
− 1 = 0,

because θ∗ > θ and R(λ̂, s) > R(δ, s). If dλ̂/d` − λ̂− δ/̀ > 0 ⇒ δ < ξ(X − 1)/X − ξ, then
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d∆̄∗/d` > 0 always. For δ lower than that threshold, we can derive a sufficient condition for
the lending rate such that the absolute value of the terms in the first line in (A.15) is lower
than 1/̀

∫ 1
λ
ξ
λ
dλ and, thus, (A.14) is positive. The latter term is strictly higher than 1/̀ ξ̇ log ξ,

while the absolute value of the former is strictly lower than 1/̀ · ξ(X − 1)/(X − ξ) · (maxR− 1),
where we considered the higher possible lending rate and set δ = 0. Thus, it is sufficient
that maxR ≤ − log ξ · (X − ξ)/(X − 1) for d∆̄∗/d` > 0. This condition is easily satisfied. For
example, given an expected yield of 5% for the illiquid asset, i.e., X = 2.1, and a liquidity
discount of 25%, i.e., ξ = 0.75, it is sufficient that the expected lending rate is lower than
35%, which is the case in our data. As mentioned, the sufficient condition on the lending rate
is rather weak and we could be relaxed further if we consider the effect of the other positive
terms in (A.14).

A.1.4 Derivatives of P with respect to y, m, s, `

We show how P changes with the demand and riskiness of cryptocurrencies as well as the size
and liquidity of the stablecoin. We first examine the effect stemming from the cryptocurrency
demand, y, and riskiness, m, as well as the size of the stablecoin s. For x ∈ {y,m, s} we have

dP

dx
= (1− δ)dR(δ, s)

dx

1− (θ∗)2

2

− dθ∗

∂x

{
(1− δ)

[
θ∗R(δ, s) + (1− θ∗) max

(
`− δ
1− δ , 0

)]
+ δ − (`+ (1− `)ξ)

}
.

(A.16)

Using (A.1)–(A.3) and (A.11), and θ∗R(δ, s)+(1−θ∗) max ((`− δ)/(1− δ), 0) > 1 > (`+(1−`)ξ)
since θ∗ > θ, we have that

dP

dy
> 0 & dP

dm
< 0 & dP

ds
< 0. (A.17)

In other words, the higher the cryptocurrency demand, the lower the risk, or the smaller the
stablecoin circulation is, the higher P is for two reasons. First, a higher y, and lower m or
s, increase the payoff conditional on a run not occurring (first term in (A.16)). Second, the
probability that a run does not occur increases with y, and decreases with m or s, as the
incentives to run are lower, all else equal (second term in (A.16)).
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Finally, a change in ` changes P according to

dP

d`
=
∫ 1

θ∗
(1− θ) · (` > δ)dθ +

∫ θ∗

0
(1− ξ)dθ

− dθ∗

∂`

[
θ∗R(δ, s) + (1− θ∗) max

(
`− δ
1− δ , 0

)
− (`+ (1− `)ξ)

]
> 0. (A.18)

In other words, the higher the percentage of liquid assets in stablecoin reserves is, the higher
P is for two reasons. First, a higher ` increases the probability of being paid conditional on
a run occurring (first term in (A.18)). Second, the probability that a run does not occur
increases with `, all else equal (second term in (A.18)).3

A.2 Model Extension: Endogenous Margin Requirements

In the baseline model, we assume that the exchange sets margin m without considering how
it should be chosen optimally between traders and investors. Given that levered lending takes
place after run uncertainty is resolved, m should not depend on θ∗, but can depend on R. To
derive an optimal m we consider a structure—akin to Fostel and Geanakoplos (2008)—under
which traders offer investors a menu of contracts k ∈ K described by a pair (Rk,mk), where
Rk is given, in equilibrium, by (3) for certain mk. That is, traders offer investors a menu of
contracts under all of which they break even. Given that these contracts are offered after
redemptions λs have been observed, they are only parameterized by different mk. Investors
will then choose the contract that maximizes their utility.

To introduce a trade-off, we suppose for this extension that investors face a cost c for
directly holding the cryptocurrency when the trader defaults. Recall from Section 2.1 that R
is the expected lending rate, incorporating the payoff when traders default, and that traders
will default for cryptocurrency payoff realizations ỹ < y′k, i.e., y′k is the threshold below which
investors receive the collateral for margin mk and is given by

y′k = (1−m)Rk,c ⇒ y′k = ȳ(1−m)Rk − y′k
2/2

ȳ − y′k
, (A.19)

where we replaced the contractual lending rate, Rk,c, with the expected lending rate, Rk.
The probability that investors incur the cost c is equal to

∫
ỹ<y′

k
dF (ỹ). We assume

ỹ ∼ U [0, ȳ] for simplicity and, thus, y = ȳ/2. Investor’s payoff from no redeeming is equal
to θ

(
Rk − c

∫
ỹ<y′

k
dF (ỹ)

)
+ (1− θ) max

(
`−λ
1−λ , 0

)
. In other words, the expected return from

lending the stablecoin, R, is curtailed by the expected cost of holding it when the trader
3As mentioned in Section 2.2 if dθ∗/d` > 0 and, hence, dP/d` < 0, then the issuer will choose ` = 0. See the
Online Appendix Section A.1.3 for a sufficient condition to exclude this case.
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defaults. Among all available contracts (Rk(mk),mk) ∀k ∈ K, the investor will choose the
one that delivers the higher payoff. Given that Rk is a function of mk, we only need to find
the mk that maximizes the investor’s payoff, which is the solution to

θ
∂Rk

∂mk

− θc ∂y
′
k

∂mk

1
ȳ

+ ψ
k
− ψk = 0 (A.20)

where ψk and ψk are the Lagrange multipliers on mk ≥ 0 and mk ≤ m̄, where m̄ is the
maximum margin traders would be willing to post given by y− m̄F ′(e−m/1−m(1− λ)s) = 0.
Recall that dRk(λ, s)/dmk is given by (A.2) and is negative. dy′k/dmk is obtained by totally
differentiating (A.19)

dy′k
dmk

= ȳ

ȳ − y′k

(
(1−m) dRk

dmk

−Rk

)
< 0. (A.21)

For m→ 0, the first two terms in (A.20) converge to y− (1− c/(ȳ − y′k))F ′(e) and is positive
only if c ≥ c̄ ≡ (ȳ − y′k)(1 − y/F ′(e)) > 0 given the assumption F ′(e) > y. For m → m̄, the
sum of the first two terms converges to dRk/dmk|mk=m̄(1− c/(ȳ − y′k)(1− m̄)) < 0. Moreover,
the sum of the first two terms is strictly decreasing for F ′′′′ > 0, which is typical for widely
used concave technologies such as Cobb-Douglas production function, and we will assume
herein. Hence, the contract that investors choose is unique and depends on the level of c.
Case I. If c ≤ c̄, then ψ

k
> 0, ψk = 0, and mk = 0, such that our baseline analysis carries

through in its entirety.
Case II. If c ≥ c̄, mk is interior, i.e., ψ

k
= ψk = 0. In this case, mk will be a function of y, λ,

and s, and we need to show that our baseline results do not change. Essentially, we need to
show that the derivatives of Rk with respect to x ∈ {y, λ, s} do not change sign. We show
that this is the case for sufficiently high c. Note that

dRk

dx
= ∂Rk

∂x
+ ∂Rk

∂mk

dmk

dx
. (A.22)

Given that ∂Rk/∂x and ∂Rk/∂mk are given by (A.1)-(A.4), we only need to sign dmk/dx, which
we can compute by totally differentiating (A.20):

dmk

dy
= −

∂2Rk
∂mk∂y

(ȳ − y′k − c(1−mk)) +
(
2− ∂y′k

∂y

)
∂Rk
∂mk

+ c∂Rk
∂y

∂2Rk
∂m2

k
(ȳ − y′k − c(1−mk)) +

(
2c− ∂y′

k

∂mk

)
∂Rk
∂mk

dmk

dx
= −

∂2Rk
∂mk∂x

(ȳ − y′k − c(1−mk))− ∂y′k
∂x

∂Rk
∂mk

+ c∂Rk
∂x

∂2Rk
∂m2

k
(ȳ − y′k − c(1−mk)) +

(
2c− ∂y′

k

∂mk

)
∂Rk
∂mk

, x ∈ {λ, s}. (A.23)
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Since F ′′′ > 0, ∂2Rk/∂m2
k < 0, and ∂2Rk/∂mk∂y > 0, ∂2Rk/∂mk∂λ > 0, ∂2Rk/∂mk∂s < 0. Moreover,

by totally differentiating (A.19), we get

dy′k
dy

= 1
ȳ − y′k

(
ȳ(1−m)∂Rk

∂dy
+ 2(1−m)Rk − 2y′k

)

dy′k
dx

= ȳ

ȳ − y′k
(1−m)∂Rk

∂x
, x ∈ {λ, s}. (A.24)

Consider c→ ȳ/1−mk
+. Then, using (A.21) and (A.24), we get

dmk

dy
= −

(2ȳ−2(1−mk)Rk)
(ȳ−y′

k
)

2c− dy′
k

dmk

−
c− ȳ

(ȳ−y′
k
)(1−mk) ∂Rk∂mk

2c− ȳ
(ȳ−y′

k
)(1−mk) ∂Rk∂mk

+ ȳ
(ȳ−y′

k
)Rk

∂Rk/∂y
∂Rk/∂mk

< −
∂Rk/∂y
∂Rk/∂mk

, (A.25)

dmk

dλ
= −

c− ȳ
(ȳ−y′

k
)(1−mk) ∂Rk∂mk

2c− ȳ
(ȳ−y′

k
)(1−mk) ∂Rk∂mk

+ ȳ
(ȳ−y′

k
)Rk

∂Rk/∂λ
∂Rk/∂mk

< −
∂Rk/∂λ
∂Rk/∂mk

, (A.26)

dmk

ds
= −

c− ȳ
(ȳ−y′

k
)(1−mk) ∂Rk∂mk

2c− ȳ
(ȳ−y′

k
)(1−mk) ∂Rk∂mk

+ ȳ
(ȳ−y′

k
)Rk

∂Rk/∂s
∂Rk/∂mk

> −
∂Rk/∂s
∂Rk/∂mk

. (A.27)

Using the above, we get from (A.22) that dRk/dy > 0, dRk/dλ > 0, and dRk/ds < 0, which
means that qualitatively the derivatives of the lending rate with respect to x are the same as
in the baseline analysis in Section 2.1 where the margin was constant.

It follows that away from the limit, but for c ≥ c̄, it also suffices to establish the bounds
in (A.25)-(A.27). These latter expressions for the bounds hold if

2 ∂2Rk

∂mk∂x

∂Rk

∂mk

>
∂2Rk

∂m2
k

∂Rk

∂x
,

which holds for all x{y, λ, s} using (A.1)-(A.4) and the cross-derivatives above. Hence,
endogenous margins may weaken quantitatively the effect of {y, λ, s} onRk—because ∂Rk/∂mk—
but qualitatively do not matter.

A.3 Model Extension: Payment services from stablecoins

In this section, we introduce an additional source of demand for stablecoins arising from
use cases other than speculation. Such services may accrue from facilitating cross-country
payments, services offered exclusively by the digital-asset ecosystem, or tax evasion and
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illicit activities. The value of these services could be aggregated in a convenience yield
V , which can be constant or depend on the number of stablecoins in circulation, that is
V (λ, s) ≡ V ((1− λ)s) with dV/ds < 0 and dV/dλ > 0 following Krishnamurthy and Vissing-
Jorgensen (2012). Then, the stablecoin payoff from not redeeming when the issuer does not
default is given by θ (R(λ, s) + V (λ, s)) + (1− θ) max (`− λ/1− λ, 0). A positive convenience
yield increases the payoff and decreases the probability of a run ceteris paribus. Moreover, if
the convenience yield decreases in the number of stablecoins, then the stabilization mechanism
operating via the redemptions channel is strengthened. The stabilization mechanism via the
liquid portfolio share continues to operate in the absence of a convenience yield.

A.4 Model Extension: Speculating on Stablecoin Collapse

In the baseline model, we considered that investors lent their stablecoins to traders, who
want to take leverage on cryptocurrencies after run uncertainty has been resolved. Yet,
traders may want to borrow the stablecoins before run uncertainty is resolved so that they
can also speculate on the collapse of the stablecoin. The idea is that promised repayment is
denominated in stablecoins and, thus, if the stablecoin price collapses to zero after a run,
traders would need to repay zero without losing their pledged collateral.

We consider a very simple extension of the model to introduce this motive. There are
two types of traders and investors: A and B. Both types are identical with the difference
that type A traders borrow stablecoins from type A investors before t = 1, while type B
traders borrow stablecoins from type B investors after t = 1. We assume that the tokens
lent early are circulated back to other stablecoin investors, who want to lend them after run
uncertainty is resolved at t = 1. Type A investors are of mass 1− δ, which is equal to patient
type B investors. Traders of both types have the same endowment and each type has its
own, distinct, outside technology. A-traders still need to pledge collateral, thus they buy the
cryptocurrency on margin as in the baseline model. Thus, the return on the outside options
is given by ρA = F ′[e− m/(1−m)(1− δ)s] for A-traders and ρB = F ′[e− m/(1−m)(1− δ)s] for
B-traders, in equilibrium when a run does not occur. The run decision for the B-investors is
the same as in Section 2.2 and the stablecoin price they are willing to offer is given by (11)
with the difference that the lending rate will be different. Next, we derive the lending rate
and the participation decision for the A-investors.

Denote by R̂ the expected lending rate for borrowing before t = 1. As before, A-traders
will break even with their outside option but in this case, they additionally do not need to
repay anything when the stablecoin collapses in a run or when the issuer default conditional
on a run not occurring, because the price of tokens goes to zero. Hence, their participation
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constraint is
∫ 1

θ∗
[θ(y − (1−m)R̂) + (1− θ)y]dθ +

∫ θ∗

0
ydθ = mρA, (A.28)

yielding

R̂ = y −mρA
1−m

2
1− θ∗2

. (A.29)

The first term in the left-hand side of (A.28) is the payoff to A-traders conditional that a run
does not occur: with probability θ (≥ θ∗) the issuer is solvent and A-traders need to repay
their stablecoin-denominated loan, while with probability 1− θ the issuer is insolvent and
tokens are worth zero, so A-traders can pocket the cryptocurrency return in its entirety. The
second term in the left-hand side of (A.28) is the payoff to A-traders conditional on a run:
A-traders pocket the whole cryptocurrency return because their stablecoin-denominated loan
is worth zero. The right-hand side in (A.28) is the outside-option payoff.

Using (1) and (A.29), we can compare the lending rates for lending before and after t = 1,
R and R̂. It is easy to see that R̂ > R. This result is intuitive. Traders face a trade-off when
borrowing early: If the run occurs, they gain a lot and are willing to offer high lending rates.
But, if the run does not occur, they will pay higher lending rates with probability θ.

A.5 Token Supply and Stablecoin Liquidity Without Observability

In the paper we derive the optimal choice of s and ` under observability. However, as noted,
the choice of ` may not be observable in real time contrary to s. The issuer may still use a
combination of ` and s to maintain the peg in response to crypto-related shocks between t = 0
and t = 1 but cannot credibly commit to a certain choice of ` given that it is not observable.
This information resembles an incomplete contract whereby the issuer may deviate from
the choice of ` after the peg is stabilized (see Online Appendix in Kashyap et al. 2023).
The issuer will maximize the profits accruing to them when choosing ` and s but will only
internalize the effect of s and not ` on the peg stability condition P = 1. Yet, the issuer will
still internalize the effect of both ` and s on the run threshold θ∗, since the run may happen
later at t = 1. Then, the optimality condition with respect to ` is

1− (θ∗)2

2
dΠ(δ)
d`

s− θ∗Π(δ)sdθ
∗

d`
= 0, (A.30)
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which together with P = 1 yields the optimal (`, s). Comparing (A.30) to (14) we see that
former misses a wedge W equal to

W = −
dP/d`
dP/ds

Π(δ)
(

1− (θ∗)2

2 − θ∗dθ
∗

ds
s

)
. (A.31)

For a given s, the issuer will choose a lower (higher) ` ifW > 0 (W < 0) when ` is unobservable
compared to the case that it is.4 In turn, this means that the change in s should be higher
(lower) to stabilize the peg for the same level of crypto-related shocks. Importantly, the issuer
will use both stabilization mechanisms to maintain the peg even when ` is unobservable. The
following Proposition shows that the sign of W depends on the level of run risk.

Proposition 3. There exist a unique θ̂ ∈ (0, 1) such that W in (A.31) is positive for θ∗ < θ̂

and negative for θ∗ > θ̂.

The proof is straightforward. Since dP/ds < 0 and dP/d` > 0 from (A.17) and (A.18), the
sign of W depends on the sum of the terms in the parenthesis, which is continuous in θ∗,
negative for θ∗ → 1 and positive for θ∗ → 0, while dθ∗/ds is positive and increasing in θ∗.
Hence, θ̂ exists and is unique. This result is intuitive. When ` is not observable, the issuer
has an incentive to deviate but at the same time still internalizes how the choice of ` matters
for run risk and, thus, their expected profits. If run risk is low, i.e., θ∗ < θ̂ and W > 0, the
issuer deviates toward a lower `, and vice versa if run risk is high. Investors anticipate this
deviation and respond by redeeming more or fewer tokens compared to the case of observable
`.

Proposition 3 also has implications for the viability of the stablecoin when the speculative
demand for cryptocurrencies wanes. In particular, suppose that there is a shock pushing y
below 1 +m[F ′(e)− 1]. If ` is observable, the issuer would set ` = 1 and keep the stablecoin
running with θ∗ = 0, i.e., no run risk (Proposition 2). But, with unobservable `, the issuer
will have an incentive to deviate toward ` < 1. Investors would anticipate this and redeem
all their tokens immediately; otherwise, they would be exposed to run risk without the
proper compensation. By continuity, the same would hold for y close to, but higher than,
1+m[F ′(e)−1], even though expected lending rates would be (somewhat) higher than one for
this level of y. Overall, stablecoins are not viable for low enough y under non-observability of
`, which also provides an additional rationale why issuers may want to disclose their reserves
more frequently during crypto turmoil, similar to what USDC did in May 2022.
4To see this, note that the solution under observable ` can be implemented in an environment where ` is
not observable under a Pigouvian tax/subsidy on liquid holdings `: A negative (positive) W calls for tax
(subsidy), implying lower (higher) ` than in the unconstrained equilibrium with unobservable `.
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A.6 Positive interest on liquid assets

This section extends the baseline model to allow for a positive interest rate on the liquid
assets. For simplicity and without loss of generality, we assume that the liquid asset pays
off r ≥ 1 from t = 1 to t = 2, while it continues to pay zero interest from t = 0 to t = 1.
The case that r = 1 corresponds to a zero (net) interest rate in the baseline model. This
extension should suffice for the purpose of studying how r matters for the t = 2 profits of the
issuer and, hence, the choice of `. To maintain a risk premium over the liquid asset we also
set the illiquid asset payoff to be a function of r, i.e., X(r).

The issuer’s profits are then given by

∫ 1

θ∗
θ

[
X(r)(1− `)

(
1− (δ − `)+

ξ(1− `)

)
+ (`− δ)+r − (1− δ)

]+

sdθ

+
∫ 1

θ∗
(1− θ)

[
(`− δ)+r − (1− δ)

]+
sdθ. (A.32)

The issuer will earn an interest rate on remaining liquid assets after repaying impatient
investors, `− δ; should the difference be positive. This may also allow the issuer to remain
solvent even in the bad state that the illiquid asset pays zero. This requires that r > r̄ = 1−δ

(`−δ)+ .
Note that for `→ 1, which implies θ∗ → 0, the profits are (1− δ)(r − 1)s.

If the issuer remains solvent in the bad state of the world, then investors could lend their
tokens to traders and earn the lending rate. Denote by λ̃ the maximum level of withdrawals
such that the issuer remains solvent in the bad state given by λ̃ = max

(
δ, lr−1

r−1

)
.

The run threshold θ∗ is determined by

∆̄∗ =
∫ λ̃

δ
[R(λ, s)− r] dλ

1− δ +
∫ λ̂

λ̃

θ∗R(λ, s) + (1− θ∗)
(
`− λ
1− λ

)+

r − r

 dλ

1− δ

+
∫ λ

λ̂

θ∗X(1− `)
[
1− λ−`

ξ(1−`)

]
1− λ − r

 dλ

1− δ −
∫ 1

λ

`+ (1− `)ξ
λ

r
dλ

1− δ = 0. (A.33)

For λ ∈ [δ, λ̃), the issuer is solvent both in the good and bad state, and investors can lend out
their tokens. For λ ∈ [λ̃, λ̂), the issuer defaults in the bad state but may invest any remaining
liquidity (`− λ)+ at t = 1 in the liquid asset to earn r, which increases the payoff from not
withdrawing when the bad state realizes. The payoffs in other regions are as in the baseline
model, though note that the payoff from withdrawing at t = 1 increases with r in all regions.
Also, the cutoffs λ̂ and λ are functionally the same due to the simplifying assumption that
the liquid asset pays interest only from t = 1 to t = 2; however, changing r affects λ̂ through
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X(r). It is also easy to show that λ̃ ≤ ` < λ̂, i.e., the level of withdrawals needed to make
the issuer insolvent in the good state is higher than the level needed for insolvency in the
bad state.

The stablecoin price is given by

P = (r > r̄) ·
∫ 1

θ∗
{(1− δ)R(δ, s)/r + δ} dθ

+ (r ≤ r̄) ·
∫ 1

θ∗

{
(1− δ)

[
θR(δ, s)/r + (1− θ) max

(
`− δ
1− δ , 0

)]
+ δ

}
dθ

+
∫ θ∗

0
(`+ (1− `)ξ)dθ, (A.34)

where the t = 2 return from lending the token, R(δ, s), needs to be discounted by r but not
the rest of the cash flow as they accrue at t = 1 and can thus earn r. Note that if r > r̄, the
issuer may be solvent in the bad state, and thus, investors can earn the lending rate in both
states conditional on a run not occurring. Otherwise, if r ≤ r̄, investors receive pro-rata the
remaining liquid resource in the bad state.

The issuer chooses ` and s to maximize (A.32) subject to P = 1, and with θ∗ and P be
determined by (A.33) and (A.34). Figure A.5 plots the profits of the issuer, for different levels
of ` and r, normalized over the profits for ` = 0.63; this is an illustrative parametrization of
the model, which should not be taken as a realistic calibration.5 Nevertheless, the qualitative
properties we highlight are general and do not depend on the choice of initial parameters.
In particular, for both zero and positive but low-enough interest rates, the issuer optimally
sets ` < 1 to maximize profits, thus exposing the stablecoin to run risk. However, for a high
enough interest rate, profits are maximized ` = 1, alleviating any run risk.

A.7 Robustness for Measuring Expected Returns

We check that using Binance’s BTC/USDT perpetual futures funding rate is a robust proxy
for expected returns. One concern is that using the BTC/USDT perpetual futures as a proxy
of y overweights idiosyncrasies specific to Bitcoin. In Table A.5, we show pairwise correlations
of the BTC/USDT time series with several others. Binance also has perpetual futures that
settle into Binance USD, another stablecoin, and we show that funding rates across perpetual
futures are highly correlated regardless of which stablecoin they settle in. Another concern is
that all futures funding rates on Binance reflect idiosyncrasies specific to Binance, rather
5We have set y = 4, m = 0.1, e = 1, F (x) = ζxα with ζ = 2 and α = 0.5, δ = 0.55, ξ = 0.4, and X = 1.4r+0.6.
We have considered three cases for r: r = 1.0 (zero interest rate), r = 1.2 (positive and low-enough interest
rate), and r = 1.4 (positive and high-enough interest rate).
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than aggregate expected returns for cryptocurrency beyond Binance. We compare Binance’s
number with another large exchange, FTX, and find that funding rates are similar across the
exchanges, confirming that the funding rates are not principally capturing exchange-specific
factors. Finally, we show that perpetual futures funding rates are closely linked to expected
returns embedded in crypto futures traded on the CME.

To address concerns about idiosyncrasies specific to Bitcoin, USDT, or Binance, we show
correlations across several different contracts (BTC, ETH, and DOGE) settled in different
types of stablecoins (USDT, BUSD, and FTX’s USD) and across both Binance and FTX. We
include DOGE as it is known as a highly speculative currency and was arguably started as a
joke. The last two columns are the expected return measures we infer from CME futures,
which we describe below. Combined, all the series are highly correlated, indicating that
variation in our main measure of y, BTC/USDT on Binance, is not principally reflecting
something specific to BTC, USDT, or Binance instead of speculative expected returns.
measures

We can also proxy for y using the expected return embedded in crypto futures traded
on the CME. Unlike the highly levered offshore perpetual futures, these futures are vanilla
futures and like equity index futures. The CME sets the rules for the derivatives, and they
have standard monthly expirations. These crypto futures are widely used by U.S.-based
institutional investors who want to speculate on the price of Bitcoin or Ether but are unwilling
or unable to hold cryptocurrencies directly. While the futures have embedded leverage, they
are considerably less levered than the offshore perpetual futures.6

We calculate expected returns y for Bitcoin and Ether using the futures prices. Let
Ft,t+n denote the price of a future at time t with delivery at t+ n, and let zt,t+n denote the
n-period discount factor implied by the risk-free rate. We can infer expected returns using
a no-arbitrage argument comparing the present value of Ft,t+n and Ft,t+n+1. The expected
return is

Et,t+n→t+n+1[y] ≡
(
zt,t+n+1

zt,t+n

)
Ft,t+n+1

Ft,t+n
(A.35)

We use the overnight-indexed swap curve to estimate the n-period discount factors: zt,t+n =
1/(1 + yOIS

t,t+n/12)(1/12) where yOIS
t,t+n is the n-month OIS yield. We prefer to use consecutive

futures rather than the front-month future versus the spot because the futures include leverage
which may introduce a bias relative to the spot price.

In principle, we can use the ratio of contracts with any expiration to calculate expected
6As of June 2022, the CME requires 50 percent (60 percent) margin for BTC (ETH) futures, allowing roughly
1× (0.67×) leverage. See https://www.cmegroup.com/markets/cryptocurrencies.html.
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returns between the two contracts’ expirations. We focus on the first and second front-month
contracts for two reasons. First, using the shortest maturity contracts helps control for any
distortions introduced by an upward-sloping term structure of risk premia. Second, the
liquidity of derivative contracts falls considerably at longer terms.

Figure A.6 plots our measure of expected returns for Bitcoin and Ether. Given the
tremendous bull market in cryptocurrencies over the past several years, expected returns are
almost always positive, although they dipped negative in late 2018 and briefly during the 2020
pandemic. The average expected return for Bitcoin using the measure is 5.0% from December
2017 to November 2022, ranging from −10.8% in December 2018 to 23.5% in February 2021.
The ETH expected return has a shorter history because the future was introduced later, but
from February 2021 to November 2022 it averaged 4.8% with a standard deviation of 7.3%
compared to BTC’s 3.9% average and 5.3% standard deviation over the same period.

We test the model’s prediction that lending rates are increasing in y by regressing Tether’s
lending rate on FTX on our measure of expected returns using

USDT Lending Ratet = α + βE[RetBTC ] + γXt + εt

where Xt is a vector of controls. Table A.6 shows the regression results. A 1pp increase in
E[RetBTC ] increases the stablecoin lending rates by between 0.8 and 1.4pp, depending on
the control variables. Across all specifications, there is a positive and significant relationship
between lending rates and expected returns. Figure A.7 is a scatter plot between expected
returns on Bitcoin and Tether lending rates showing a positive relationship.

One concern is that we confound expected speculative returns with the term structure of
risk premium. We control for this problem by including an expected return for the SPX equity
index using the same logic: we compare the present value of the first and second front-month
for the SPX. Including this control in column (6) does not change the statistically strong
relationship between expected returns and lending rates.
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A.8 Appendix Figures
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Figure A.1: Speculation and USDT Market Cap. Figure plots the monthly average of the daily perpetual future funding rate and daily change
in Tether’s market cap.
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Figure A.2: Prime Money-Market Mutual Fund Holdings of Treasuries and ONRRPs. Figure the ratio of total prime money fund assets
held in Treasuries or in Treasuries plus investments at the Federal Reserve. Data from the Office of Financial Research’s U.S. Money Market Fund
Monitor.
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Figure A.3: Tether Redemptions and Issuance. Left panel plots the daily redemptions and issuance of Tether as a percent of its face value.
Redemptions are defined as the change in the face value of the stablecoin’s market capitalization on date t divided by the face value on date t− 1 for
days with net redemptions, and zero otherwise. Right panel plots the analogous measure for days with net issuance, and zero otherwise.
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Figure A.4: PYUSD and Kamino. Figure plots the market capitalization of PYUSD before and after the introduction of the Kamino lending
platform in Solana.
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Figure A.5: Stablecoin issuer’s profit for different ` and r.
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Figure A.6: Futures-Implied Expected Returns Figure plots the one-month/one-month expected return on Bitcoin and Ether estimated using
the difference in present values for one-month futures prices relative to two-month futures prices. Present values are calculated using OIS interest rates,
and futures prices are CME future prices.
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Figure A.7: Stablecoin Lending Rates and Futures-Implied Expected Returns. Figure plots a binscatter of the one-month/one-month
expected return on Bitcoin against USDT’s margin lending rate on the FTX exchange.
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A.9 Appendix Tables

Haircut (%) Coin Ticker FTX Binance Bitfinex Kraken

Major Coins Bitcoin BTC 5 5 0 0
Ether ETH 10 5 0 0
Cardano ADA n.a. 10 70 10
Ripple XRP 10 15 50 n.a.
Solana SOL 15 10 30 10
Dogecoin DOGE 10 5 80 n.a.
Litecoin LTC 10 10 0 30
Avalanche AVAX 15 20 80 50
Tron TRX 15 50 70 50

Stablecoins Tether USDT 5 0 0 10
USD Coin USDC 0 0 0 10
Binance USD BUSD 0 0 n.a. n.a.
Dai DAI 15 n.a. 25 10

Average Major Coins 11 14 42 21
Stablecoins 5 0 8 10

Table A.1: Haircuts. The Table gives haircuts across FTX, Binance, Bitfinex, and Kraken. FTX haircut
is 1 minus the initial weight; Binance haircut is 1 minus the collateral rate. Average is an unweighted average
of the haircuts in the corresponding rows above. Collateral haircuts updated as of November 2022, except
Binance numbers are October 2022. A lower haircut implies that a larger share of the asset’s nominal price
can be used to back a levered position. While there is heterogeneity across exchanges, stablecoins have lower
haircuts. Note that exchange deposits are economically equivalent to a non-tradeable stablecoin issued by
the exchange and have similarly low haircuts. Suppose a trader wants to use ten times leverage to buy $100
of BTC. The margin requirement depends on the trader’s collateral. Using Binance haircuts, if the trader
posts AVAX as collateral, they must provide $10/(1− 20%) = $12.5 of AVAX. If, however, the trader posts
USDT as collateral, they need to post only $10/(1− 0%) = $10 of USDT. Posting a stablecoin as collateral
requires 20% less equity capital from the trader.
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1 Largest 3 Largest 5 Largest 10 Largest All

(1) (2) (3) (4) (5)

FTX Tether Lending Ratet 0.05∗∗∗ 0.03∗∗∗ 0.02∗∗ 0.03∗ 0.03∗∗∗

(23.77) (2.70) (2.04) (1.91) (4.39)

N 273 673 1,074 1,989 5,668
R2 0.31 0.14 0.04 0.03 0.09
TVL Weighted No No No No Yes
Avg. TVL ($ millions) 183 150 104 65 15

Table A.2: FTX Lending Rates and Defi Lending Rates. Table presents regression RDefij,t = α + β1R
USDT
t + εi,t where RUSDTt is Tether’s

margin lending rate from the FTX exchange and RDefij,t is the lending rate at the Defi lending platform j. Defi lending rates from DefiLlama, spanning
all protocols in the lending category that include Tether. Observations are daily, and we winsorize defi lending rates at the 5 and 95 percentile to
reduce the influence of outliers. Protocols are calculated using their average 2022 total value lock (TVL) in US dollars. Column 5 includes all protocols
in the sample and weights the regression by the protocol’s average 2022 TVL. “Avg. TVL” row provides the average total value lock of the protocols in
the given sample. Constant omitted. t-statistics are reported in parentheses using robust standard errors, where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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USDT DAI

∆EFFRt ∆EFFRt

∆Ri,t −0.007 0.000
(0.87) (0.99)

N 486 450

Table A.3: Correlation of FTX Lending Rates and Fed Funds Rate. Table presents the correlation of FTX lending rates for stablecoin i,
Ri,t, with the effective federal funds rate where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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USDT USDT and DAI

(1) (2) (3) (4) (5) (6)

∆ ln(si,t) −2.65∗∗ −3.65∗∗ −4.42∗∗∗ −1.03∗ −1.23∗∗ −1.33∗∗

(−2.57) (−2.55) (−3.00) (−1.89) (−2.07) (−2.18)
Bitcoin Implied Volatilityt −10.66 −9.25

(−1.42) (−1.25)
∆ ln(si,t−1) 1.01 −0.55

(0.69) (−1.22)
ln(si,t−1) −4761.72∗∗∗ −806.44∗∗

(−2.69) (−2.28)

N 704 704 704 1,353 1,353 1,353
R2 0.01 0.02 0.04 0.00 0.01 0.01
Month FE No Yes Yes No Yes Yes
Coin FE n/a n/a n/a No Yes Yes

Table A.4: Outside Option Return and Stablecoin Volume. Table presents regression ∆ρt = α+ β1∆ ln(si,t) + γ′X + ai + bt + εi,t where ∆ρt
is the change in the outside option ρt, ∆ ln(si,t) is the change in the log change in the face value of stablecoin i (either USDT or USDT and DAI), X is
a set of controls, ai is a stablecoin fixed effect, and bt is a time fixed effect. We define the outside option ρt = yt − (1−m)Rt where yt is proxied by the
future funding rate, Rt is the FTX lending rate for the given stablecoin, and we assume m = 0.2. t-statistics are reported in parentheses using robust
standard errors and clustered by week, where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

A
.27



BTC/USDT ETH/USDT BTC/BUSD DOGE/BUSD BTC/USD ETH/USD E[RBTC] E[RETH]
Binance Binance Binance Binance FTX FTX CME CME

BTC/USDT, Binance 1.00
ETH/USDT, Binance 0.89∗∗∗ 1.00
BTC/BUSD, Binance 0.81∗∗∗ 0.70∗∗∗ 1.00
DOGE/BUSD, Binance 0.64∗∗∗ 0.59∗∗∗ 0.65∗∗∗ 1.00
BTC/USD, FTX 0.83∗∗∗ 0.79∗∗∗ 0.76∗∗∗ 0.59∗∗∗ 1.00
ETH/USD, FTX 0.75∗∗∗ 0.87∗∗∗ 0.65∗∗∗ 0.51∗∗∗ 0.80∗∗∗ 1.00
E[RBTC] 0.65∗∗∗ 0.62∗∗∗ 0.55∗∗∗ 0.50∗∗∗ 0.66∗∗∗ 0.61∗∗∗ 1.00
E[RETH] 0.65∗∗∗ 0.62∗∗∗ 0.57∗∗∗ 0.55∗∗∗ 0.64∗∗∗ 0.56∗∗∗ 0.83∗∗∗ 1.00
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.5: Correlation of Expected Return Proxies. Table presents the pairwise correlations of several perpetual futures funding rates and the
expected return inferred using CME crypto futures. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Bitcoin Ether Both

(1) (2) (3) (4) (5) (6)

E[RetBTC] 1.05∗∗∗ 0.51∗∗∗ 0.55∗∗∗ 0.64∗∗∗

(7.64) (3.16) (2.76) (2.87)
RetBTC 0.23∗∗∗ 0.37∗∗∗

(2.86) (3.01)
E[RetETH] 0.78∗∗∗ 0.15 0.45∗∗∗ −0.14

(8.10) (0.94) (4.06) (−0.73)
RetETH 0.09 −0.15

(1.35) (−1.52)
E[RetS&P] 0.05

(0.60)

N 924 924 868 868 868 868
R2 0.35 0.51 0.35 0.50 0.38 0.52
Month FE No Yes No Yes No Yes
Coin FE No Yes No Yes No Yes

Table A.6: Stablecoin Interest Rates and Expected Returns. Table presents regression Rt,i = α+ β1Et[Reti] + β2Ret
i + ai + bt + εi,t where

Rt,i is the lending rate for stablecoin i, either USDT or DAI, Et[Retj ] is the one-month/one-month expected returns for coin j—either Bitcoin and
Ether—Retj is the contemporaneous price returns on Bitcoin and Ether, ai is a stablecoin fixed effect, and bt is a time fixed effect. Observations are
daily; the Bitcoin-only sample in columns (1) and (2) runs from December 2020 to November 5, 2022, and the remaining columns with Ether run from
February 2021 to November 5, 2022. t-statistics are reported in parentheses using robust standard errors and clustered by week, where ∗ p < 0.10, ∗∗
p < 0.05, ∗∗∗ p < 0.01.
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Lending Rate Rt

USDT DAI
1 Day 1 Week 4 Weeks 1 Day 1 Week 4 Weeks

(1) (2) (3) (4) (5) (6)

̂Futures Funding Ratet 0.182 0.207 0.315 0.178 0.131∗∗ −0.153
(1.540) (1.339) (0.654) (1.479) (2.019) (−0.710)

Rt−1 0.606∗∗∗ 0.519∗∗∗ 0.437 0.500∗∗∗ 0.556∗∗∗ 0.674∗∗∗

(4.761) (2.992) (1.005) (6.712) (7.221) (4.719)
Bitcoin Implied Volatilityt −0.033 −0.039 0.009 −0.060 −0.044 0.011

(−0.733) (−0.725) (0.181) (−1.193) (−1.506) (0.468)
∆ ln(si,t) −0.007∗ −0.004 −0.005 −0.003 0.000 0.006

(−1.773) (−1.332) (−0.569) (−0.922) (0.031) (1.256)

N 258 258 258 258 258 258
F -stat 1.88 1.25 0.33 2.45 1.47 0.96
Time FE Yes Yes Yes Yes Yes Yes

Table A.7: Instrumental Variables Placebo Regression of Futures Funding Premia and Lending Rates. Instrumental variables regression
using the mean household rating of MLB games on a given day in the future as an instrument to predict the perpetual futures funding premium. Table
presents several placebo tests using viewership data from the future as the instrumental variable: either 1 day, 1 week, or 4 weeks in the future. Time
FE indicates day of week, month of year, and year fixed effects. Kleibergen-Paap rk Wald F statistics reported. t-statistics are reported in parentheses
using robust standard errors and clustered by week where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Instrument: Household Rating × Championship Leverage Index

Lending Rate Rt

USDT DAI

(1) (2) (3) (4)

̂Futures Funding Ratet 0.342∗∗∗ 0.217∗∗∗ 0.252∗∗∗ 0.162∗∗∗

(10.872) (3.280) (4.019) (3.660)
Bitcoin Implied Volatilityt 0.032 0.030 −0.028 −0.027

(0.366) (0.424) (−0.597) (−0.860)
∆ ln(si,t) −0.008 −0.005 −0.009∗∗∗ −0.006∗∗

(−1.246) (−1.149) (−2.673) (−2.331)
Rt−1 0.406∗ 0.512∗∗∗

(1.925) (6.302)

N 245 245 245 245
F -stat 24.84 7.11 22.48 21.01
Time FE Yes Yes Yes Yes

Table A.8: Instrumental Variables Regression of Futures Funding Premia and Lending Rates with Championship Leverage Index.
Instrumental variables regression using the mean household rating of MLB games on a given day as an instrument to predict the perpetual futures
funding premium. Instrument is the product of the Household Rating and the Championship Leverage Index. The Championship Leverage Index (cLI)
is a common sabermetrics estimate of the importance of a game to a team’s chances of winning the World Series. cLI data provided by Baseball
Reference for the regular season, and we manually calculate it for playoff games. The cLI is standardized so that its value is 1 for the average game.
Time FE indicates day of week, month of year, and year fixed effects. Kleibergen-Paap rk Wald F statistics reported. t-statistics are reported in
parentheses using robust standard errors and clustered by week where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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BTC ETH DOGE

(1) (2) (3) (4) (5) (6)

Rating 0.14 0.15 0.23 0.23 0.36∗ 0.40∗∗

(1.18) (1.27) (1.29) (1.29) (1.93) (2.25)
Constant −0.14 −0.13 −0.11 −0.01 −0.27 0.26

(−0.56) (−0.43) (−0.34) (−0.01) (−0.81) (0.34)

N 258 258 258 258 258 258
R2 0.00 0.04 0.00 0.04 0.01 0.04
Day-of-Week FE No Yes No Yes No Yes

Table A.9: Speculative Returns and Household Rating. Table presents regression Reti,t = α+ βHousehold Ratingt + bt + εi,t where Reti,t is
the price return of coin i—where i is Bitcoin, Ether, or Dogecoin—Household Ratingt is the household rating of nationally televised MLB games on
date t, and bt are day of week fixed effects. Observations are daily. t-statistics are reported in parentheses using robust standard errors and clustered
by week, where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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